Images by Date
Images by Category
Solar System
White Dwarfs
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Galaxy Clusters
Cosmology/Deep Field
Images by Interest
Space Scoop for Kids
Sky Map
Photo Blog
Top Rated Images
Image Handouts
Fits Files
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Cases of Black Hole Mistaken Identity

  • Astronomers have discovered over two dozen growing supermassive black holes that had been misidentified before.

  • This result used data from several telescopes including NASA's Chandra X-ray Observatory, and the Hubble and Spitzer Space Telescopes.

  • The 28 supermassive black holes were found in the Chandra Deep Field-South, the deepest X-ray image ever obtained.

  • The discovery has important implications for understanding how supermassive black holes grow and evolve over billions of years.

A team of researchers has identified a group of black holes that had previously been mistaken for a different kind of black hole, as described in our latest press release. This discovery has important implications for understanding how supermassive black holes grow and evolve over billions of years.

The misjudged black holes were found in the Chandra Deep Field-South (CDF-S), the deepest X-ray image ever taken. The main panel of the graphic shows the CDF-S, which contains over 7 million seconds of observing time from Chandra collected over many years. In this image, red, green, and blue represent the low, medium, and high-energy X-rays that Chandra can detect. Most of the points in this image are a black hole.

This latest work combines X-rays from Chandra in the CDF-S with large amounts of data at different wavelengths from other observatories, including NASA's Hubble Space Telescope and NASA's Spitzer Space Telescope. The team looked at black holes located 5 billion light years or more away from Earth in this patch of sky. At these distances, scientists had already found 67 heavily obscured, growing black holes with both X-ray and infrared data in the CDF-S. In this latest study, the authors identified another 28, highlighted by circles in a labeled version of the image. Optical and infrared images for four of these 28 are shown in a separate graphic.

Four heavily obscured, growing black holes plotted on CDFS
Credit: NASA/CXC/Penn State/B.Luo et al

These 28 supermassive black holes were previously categorized differently — either as slowly growing black holes with low density or nonexistent cocoons, or as distant galaxies. Supermassive black holes grow by pulling in surrounding material, which is heated and produces radiation at a wide range of wavelengths including X-rays. Many astronomers think this growth includes a phase, which happened billions of years ago, when a dense cocoon of dust and gas covers most black holes. These cocoons of material, which are the fuel source that enables the black hole to grow and generate radiation, are depicted in the artist's illustration in the inset. The cocoon (red) surrounds a disk of material falling onto the black hole, plus a wind of material (blue) blowing away from the disk. A portion of the cocoon is cut out to show the heavily obscured black hole.

These results are important for theoretical models estimating the number of black holes in the universe and their growth rates, including those with different amounts of obscuration. Scientists design these models to explain a uniform glow in X-rays across the sky called the "X-ray background," first discovered in the 1960s. Individual growing black holes observed in images like the CDF-S account for most of the X-ray background.

A paper reporting the results of this study is being published in The Astrophysical Journal and a copy is available online. The other authors of the paper are Erini Lambrides (Johns Hopkins University in Baltimore, Maryland), Marco Chiaberge (Space Telescope Science Institute in Baltimore, Maryland), Roberto Gilli (National Institute of Astrophysics in Bologna, Italy), Timothy Heckman (Johns Hopkins), Fabio Vito (Pontificia Universidad Católica de Chile in Santiago), and Colin Norman (Johns Hopkins).


Fast Facts for Obscured AGN in the Chandra Deep Field South:
Credit  X-ray: NASA/CXC/Penn State/B.Luo et al; Illustration: NASA/CXC/M. Weiss
Release Date  July 15, 2020
Scale  Image is about 16 arcmin across (about 26 million light years assuming distance is 11 billion light years).
Category  Cosmology/Deep Fields/X-ray Background, Black Holes
Coordinates (J2000)  RA 03h 32m 28s | Dec -27° 48´ 30"
Constellation  Fornax
Observation Date  102 pointings between 1999 and 2016
Observation Time  1944 hours 27 minutes (81 days 27 minutes)
Obs. ID  1431, 441, 582, 1672, 2239, 2312, 2313, 2405, 2406, 2409, 8591-8597, 9575, 9578, 9593, 9596, 9718, 12043-12055, 12123, 12128, 12129, 12135, 12137, 12138, 12213, 12218-12220, 12222, 12223, 12227, 12230-12234, 16175-16191, 16450-16463, 16620, 16641, 16644, 17416, 17417, 17535, 17542, 17546, 17552, 17556, 17573, 17633, 17634, 17677, 18709, 18719, 18730
Instrument  ACIS
References Lambrides, E., et al, 2020, ApJ, accepted; arXiv:2002.00955
Color Code  X-ray (Red, Green, Blue)
Distance Estimate  About 5.4 to 11 billion light years
distance arrow
Rate This Image

Rating: 3.9/5
(273 votes cast)
Download & Share

More Information
More Images
X-ray Image
of CDF-S
Jpg, Tif

More Images
Animation & Video
A Tour of Chandra Explores CDFS AGN

More Animations
Related Images
Related Information
Related Podcast
Top Rated Images
Chandra's 25th Anniversary

Chandra Releases 3D Instagram Experiences

Timelapses: Crab Nebula and Cassiopeia A