Images by Date
Images by Category
Solar System
White Dwarfs
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Galaxy Clusters
Cosmology/Deep Field
Images by Interest
Space Scoop for Kids
Sky Map
Photo Blog
Top Rated Images
Image Handouts
Fits Files
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Famous Black Hole Has Jet Pushing Cosmic Speed Limit

  • Chandra data show that the black hole in the galaxy M87 is propelling particles away from it faster than 99% the speed of light.

  • These remarkable speeds were detected in changes in the X-ray emission between 2012 and 2017 in regions along a jet generated by the black hole.

  • M87 became famous in April 2019 when the Event Horizon Telescope released the first-ever direct image of its black hole.

  • The jet seen with Chandra is 500,000 times larger and shows much older activity from the black hole than the ring imaged by the EHT.

These images show evidence from NASA's Chandra X-ray Observatory that the black hole in the galaxy Messier 87 (M87) is blasting particles out at over 99% the speed of light, as described in our latest press release. While astronomers have observed features in the M87 jet blasting away from its black hole this quickly at radio and optical wavelengths for many years, this provides the strongest evidence yet that actual particles are travelling this fast. Astronomers required the sharp X-ray vision from Chandra in order to make these precise measurements.

The main panel of the graphic shows the entire length of M87's jet seen by Chandra, stretching for about 18,000 light years. "Knots" of X-ray emission seen here are created when material sporadically falls onto the M87 black hole, creating bursts of X-ray light that travel along the jet and away from the black hole. The insets show Chandra observations taken in 2012 and 2017 of a small region near the base of the jet. The source in the lower left is X-ray emission from material around the black hole, and the other source is a knot in the jet about 900 light years from the black hole. This knot moves away from the black hole between 2012 and 2017 and also fades by 70%.

Insets labeled
2012 & 2017 Labeled Insets (Credit: NASA/CXC/SAO/B. Snios et al.)

The researchers carefully studied this knot, and another one about 2,500 light years along the jet. By comparing how far these knots moved over the five-year interval, the team of astronomers was able to determine the closer knot has an apparent speed of 6.3 times the speed of light for the X-ray knot, while the other looks like it is moving at 2.4 times the speed of light.

Illustration of jet
Illustration of the Supermassive Black Hole at the Center of M87 (Credit: NASA/CXC/M.Weiss)

This is an example of superluminal motion, which occurs when objects are traveling close to the speed of light along a direction that is close to Earth's line of sight. The jet travels almost as quickly towards us as the light it generates, giving the illusion that the jet's motion is much more rapid than the speed of light. In the case of M87, the jet is pointing close to our direction, resulting in these exotic apparent speeds.

Previously astronomers have not been able to definitively show that matter in the jet is moving at very close to the speed of light. For example, the moving features could be a wave or a shock, similar to a sonic boom from a supersonic plane, rather than tracing the motions of matter.

Chandra Wide-field view of M87; box shows the approximate location of the wide-field jet image above
Chandra Wide-field View of M87; box shows the approximate location of the wide-field jet image above (Credit: NASA/CXC)

The black hole in M87 received a great deal of attention in April 2019 when the Event Horizon Telescope project released the first image of a black hole from this galaxy, which has been observed many times by Chandra over its two decades of operations. The black hole in M87 has a mass of about 6.5 billion times that of the sun and is located about 55 million light years from Earth.

A paper describing these results, which were presented at the 235th meeting of the American Astronomical Society, was published in The Astrophysical Journal and is available online. The authors of the paper were Brad Snios (Center for Astrophysics | Harvard & Smithsonian, or CfA), Paul Nulsen (CfA), Ralph Kraft (CfA), Teddy Cheung (Naval Research Laboratory), Eileen Meyer (University of Maryland, Baltimore County), William Forman (CfA), Christine Forman (CfA), and Stephen Murray (CfA).

NASA's Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science and flight operations from Cambridge and Burlington, Massachusetts.


Fast Facts for M87:
Credit  NASA/CXC/SAO/B. Snios et al.
Release Date  January 6, 2020
Scale  Wide-field image is about 45 arcsec (12,000 light years) across. Insets are about 3 arcsec (790 light years) across.
Category  Black Holes, Quasars & Active Galaxies
Coordinates (J2000)  RA 12h 30m 49s | Dec 12° 23´ 28"
Constellation  Virgo
Observation Date  April 14, 2012 and March 2, 2017
Observation Time  40 hours 33 minutes (1 day 16 hours 33 minutes)
Obs. ID  13515, 18612
Instrument  HRC
Also Known As NGC 4486
References Snios, B. et al., 2019, ApJ, 879, 8; arXiv:1905.04330.
Color Code  Intensity (orange-white)
Distance Estimate  About 55 million light years
distance arrow
Rate This Image

Rating: 3.9/5
(329 votes cast)
Download & Share

More Information
Press Room: M87

Blog: M87
More Images
Full Field Image of M87
Jpg, Tif
Full field image

More Images
Animation & Video
A Tour of the M87 Jet

More Animations
More Releases
(14 Apr 21)

(10 Apr 19)

(18 Aug 10)

(05 Aug 08)

(05 Oct 06)

(10 May 04)

Related Images
Double AGN
Double AGN
(3 Oct 17)

NGC 6240
NGC 6240
(06 Oct 09)

Related Information
Related Podcast
Top Rated Images
Chandra Releases 3D Instagram Experiences

Brightest Cluster Galaxies

Timelapses: Crab Nebula and Cassiopeia A