Images by Date
Images by Category
Solar System
Stars
Exoplanets
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
4K JPG
Multiwavelength
Sky Map
Constellations
Photo Blog
Top Rated Images
Image Handouts
Desktops
Fits Files
Visual descriptions
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
G292.0+1.8: NASA's Chandra Catches Pulsar in X-ray Speed Trap
G292.0+1.8

  • A pulsar is racing through the debris of an exploded star at a speed over a million miles per hour.

  • To measure this, researchers compared images of G292.0+1.8 from NASA's Chandra X-ray Observatory taken in 2006 and 2016.

  • Pulsars can form when massive stars run out of fuel, collapse and explode — leaving behind a rapidly spinning dense object.

  • This result may help explain how some pulsars are accelerated to such remarkably high speeds.

The G292.0+1.8 supernova remnant contains a pulsar moving at over a million miles per hour. This image features data from NASA's Chandra X-ray Observatory (red, orange, yellow, and blue), which was used to make this discovery, as discussed in our latest press release. The X-rays were combined with an optical image from the Digitized Sky Survey, a ground-based survey of the entire sky.

Pulsars are rapidly spinning neutron stars that can form when massive stars run out of fuel, collapse and explode. Sometimes these explosions produce a "kick," which is what sent this pulsar racing through the remains of the supernova explosion. An inset shows a close-up look at this pulsar in X-rays from Chandra.

To make this discovery, the researchers compared Chandra images of G292.0+1.8 taken in 2006 and 2016. A pair of supplemental images show the change in position of the pulsar over the 10-year span. The shift in the source's position is small because the pulsar is about 20,000 light-years from Earth, but it traveled about 120 billion miles over this period. The researchers were able to measure this by combining Chandra's high-resolution images with a careful technique of checking the coordinates of the pulsar and other X-ray sources by using precise positions from the Gaia satellite.

Image showing pulsar positions
Pulsar Positions, 2006 & 2016 (Credit: X-ray: NASA/CXC/SAO/L. Xi et al.)

The team calculated the pulsar is moving at least 1.4 million miles per hour from the center of the supernova remnant to the lower left. This speed is about 30% higher than a previous estimate of the pulsar's speed that was based on an indirect method, by measuring how far the pulsar is from the center of the explosion.

The newly determined speed of the pulsar indicates that G292.0+1.8 and its pulsar may be significantly younger than astronomers previously thought. The researchers estimate that G292.0+1.8 would have exploded about 2,000 years ago as seen from Earth, rather than 3,000 years ago as previously calculated. This new estimate of the age of G292.0+1.8 is based on extrapolating the position of the pulsar backwards in time so that it coincides with the center of the explosion.

Several civilizations around the globe were recording supernova explosions at that time, opening the possibility that G292.0+1.8 was directly observed. However, G292.0+1.8 is below the horizon for most northern hemisphere civilizations that might have observed it, and there are no recorded examples of a supernova being observed in the southern hemisphere in the direction of G292.0+1.8.

In addition to learning more about the age of G292.0+1.8, the research team also examined how the supernova gave the pulsar its powerful kick. There are two main possibilities, both involving material not being ejected by the supernova evenly in all directions. One possibility is that neutrinos produced in the explosion are ejected from the explosion asymmetrically, and the other is that the debris from the explosion is ejected asymmetrically. If the material has a preferred direction the pulsar will be kicked in the opposite direction because of the principle of physics called the conservation of momentum.

The amount of asymmetry of neutrinos required to explain the high speed in this latest result would be extreme, supporting the explanation that asymmetry in the explosion debris gave the pulsar its kick.

The energy imparted to the pulsar from this explosion was gigantic. Although only about 10 miles across, the pulsar's mass is 500,000 times that of the Earth and it is traveling 20 times faster than Earth's speed orbiting the Sun.

The latest work by Xi Long and Paul Plucinksky (Center for Astrophysics | Harvard & Smithsonian) on G292.0+1.8 was presented at the 240th meeting of the American Astronomical Society meeting in Pasadena, CA. The results are also discussed in a paper that has been accepted for publication in The Astrophysical Journal and is available online. The other authors of the paper are Daniel Patnaude and Terrance Gaetz, both from the Center for Astrophysics.

NASA's Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

 

Fast Facts for G292.0+1.8:
Credit  X-ray: NASA/CXC/SAO/L. Xi et al.; Optical: Palomar DSS2
Release Date  June 15, 2022
Scale  Main image is about 11.4 arcmin (66 light-years) across.
Category  Supernovas & Supernova Remnants
Coordinates (J2000)  RA 11h 24m 36.00s | Dec -59° 16´ 00.00"
Constellation  Centaurus
Observation Date  6 pointings between 13 Sep and 16 Oct 2006 and 9 pointings between 4 Oct and 13 Nov 2016
Observation Time  224 hours (9 days, 8 hours)
Obs. ID  6677-6680, 8221, 8447, 18028, 18029, 19893, 19894, 19897-19899
Instrument  ACIS
References Xi L. et al, 2022, ApJ, Accepted; arXiv: 2205.07951
Color Code  X-ray: (red: 0.50-1.2keV, orange/yellow: 1.2-2.2 keV, blue: 2.2-8.0 keV); Optical: red and blue
Optical
X-ray
Distance Estimate  About 20,000 light-years
distance arrow
Rate This Image

Rating: 3.9/5
(976 votes cast)
Download & Share

Visual Description

More Information
Press Room: G292.0+1.8
Blog: G292.0+1.8
More Images
X-ray Image of
G292
Jpg, Tif
g292 X-ray image

More Images
Animation & Video
A Tour of G292
animation

More Animations
More Releases
G292.0+1.8
G292.0+1.8
(23 Jul 19)

G292.0+1.8
G292.0+1.8
(22 Jul 14)

G292.0+1.8
G292.0+1.8
(17 Dec 09)

G292.0+1.8
G292.0+1.8
(23 Oct 07)

G292.0+1.8
G292.0+1.8
(22 Oct 01)

Related Images
NGC 4696
J2030
(14 March 2022)
NGC 4696
Geminga
(18 January 2017)

Related Information
Related Podcast
Top Rated Images
Guitar Nebula

Brightest Cluster Galaxies

Timelapses: Crab Nebula and Cassiopeia A




FaceBookTwitterYouTubeFlickr