Supernovas & Supernova Remnants

Adding a New Dimension to an Old Explosion

This image of the debris of an exploded star - known as supernova remnant 1E 0102.2-7219, or "E0102" for short - features data from NASA's Chandra X-ray Observatory. E0102 is located about 190,000 light years away in the Small Magellanic Cloud, one of the nearest galaxies to the Milky Way. It was created when a star that was much more massive than the Sun exploded, an event that would have been visible from the Southern Hemisphere of the Earth over 1000 years ago.
Chandra Images

A Super-Efficient Particle Accelerator

This image of data from NASA's Chandra X-ray Observatory and the European Southern Observatory's Very Large Telescope shows a part of the roughly circular supernova remnant known as RCW 86. This remnant is the remains of an exploded star, which may have been observed on Earth in 185 AD by Chinese astronomers. By studying this remnant, a team of astronomers was able to understand new details about the role of supernova remnants as the Milky Way's super-efficient particle accelerators.

Supernova Remnant is an Unusual Suspect

A new image from NASA's Chandra X-ray Observatory shows a supernova remnant with a different look. This object, known as SNR 0104-72.3 (SNR 0104 for short), is in the Small Magellanic Cloud, a small neighboring galaxy to the Milky Way. Astronomers think that SNR 0104 is the remains of a so-called Type Ia supernova caused by the thermonuclear explosion of a white dwarf.
Chandra Images

A Young Pulsar Shows its Hand

A small, dense object only twelve miles in diameter is responsible for this beautiful X-ray nebula that spans 150 light years. At the center of this image made by NASA's Chandra X-ray Observatory is a very young and powerful pulsar, known as PSR B1509-58, or B1509 for short. The pulsar is a rapidly spinning neutron star which is spewing energy out into the space around it to create complex and intriguing structures, including one that resembles a large cosmic hand.

A New View of Tycho's Supernova Remnant

This composite image of the Tycho supernova remnant combines X-ray and infrared observations obtained with NASA's Chandra X-ray Observatory and Spitzer Space Telescope, respectively, and the Calar Alto observatory, Spain. It shows the scene more than four centuries after the brilliant star explosion witnessed by Tycho Brahe and other astronomers of that era.

Tycho's Supernova Remnant

Now or Then: Explaining Light Travel Time

With the press release for G1.9+0.3 we talked about when an event in a distant part of the Milky Way galaxy occurred. One delicate issue that immediately came to mind was what to do about the light travel time to this object. We decided to adopt the astronomer's convention and talk about events in Earth's time frame, that is when the light reached the Earth, as we noted in the press release and in a few other places on our web-site.

Chandra Image of G292.0+1.8

The aftermath of the death of a massive star is shown in beautiful detail in this new composite image of G292.0+1.8. In color is the Chandra X-ray Observatory image - easily the deepest X-ray image ever obtained of this supernova remnant - and in white is optical data from the Digitized Sky Survey. Although considered a "textbook" case of a supernova remnant, the intricate structure shown here reveals a few surprises.

Pages

Disclaimer: This service is provided as a free forum for registered users. Users' comments do not reflect the views of the Chandra X-ray Center and the Harvard-Smithsonian Center for Astrophysics.
Please note this is a moderated blog. No pornography, spam, profanity or discriminatory remarks are allowed. No personal attacks are allowed. Users should stay on topic to keep it relevant for the readers.
Read the privacy statement