Neutron Stars/X-ray Binaries

From High School to a High-Energy Discovery

Image of Julia Berndtsson with a mountainscape in the background
Julia Berndtsson

This blog post was written by Julia Berndtsson, a Swedish physics student currently in the third year of her undergraduate studies at Princeton University in the United States. For our latest Chandra result, she collaborated with Rosanne Di Stefano at the Center for Astrophysics | Harvard & Smithsonian during her last year of high school and through the first half of her freshman year at Princeton. She is currently exploring a range of topics in physics and engineering and works with Jason Petta's group at Princeton on developing semiconducting qubits.

When one imagines a scientist, a high school student usually isn’t the first thing that comes to mind. What people may or may not know is that there are multiple summer programs aimed at students still in their secondary education to gain exposure to research in their natural sciences, and it is because of such a program I ended up joining Dr. Rosanne Di Stefano in writing a paper on the discovery of the first planet candidate in an external galaxy.

The summer before my senior year, I was admitted to the Center for Excellence in Education’s Research Science Institute where participants were matched with a research mentor and given a project to be carried out over six weeks. Meeting Rosanne for the first time had me in awe. Not only did she give the students she took on her full confidence, but she would talk with excitement both about the topics that we were examining and over the fact that you were there to work on these problems too.

Behind the Story of the First Extragalactic Exoplanet Candidate

Image of Rosanne DiStefano in front of bushes
Rosanne DiStefano

We welcome Rosanne Di Stefano, an astrophysicist at the Center for Astrophysics | Harvard & Smithsonian, as our guest blogger. Her work has encompassed a broad range of astronomical systems: stars interacting within dense stellar environments, the binary evolution of possible progenitors of Type Ia supernovae, X-ray astronomy, and gravitational microlensing. In this post, she writes about her team’s finding of a possible planet candidate in M51, which is featured in our latest press release.

The discovery of a candidate planet in M51 (nicknamed the “Whirlpool” galaxy) represents several firsts. Perhaps most important, it is the first candidate planet in a distant galaxy. Since the 1750s, it has been conjectured that the dim distant nebulas, now called galaxies, are island universes: large, gravitationally-bound stellar populations similar to our home, the Milky Way. Since the work of Edwin Hubble in 1929, we have been able to study stars in other galaxies. Our discovery of the planet candidate — in a binary system called M51 ULS-1 — gives us the first peek into external populations of planetary systems, extending the reach of planet searches to distances roughly ten thousand times more distant.

The candidate planet is understood to be in the “circumbinary” orbit of a compact object (either a neutron star or a black hole) and a donor star, meaning that the donor and compact orbit one another and that the candidate planet orbits the mass center of these two. (We call it a “donor” star because the compact object is pulling material from its surface and into a disk around the neutron star or black hole.) This makes the planet candidate in M51 ULS-1 the first found to be orbiting a high-mass star. In our own Galaxy, astronomers have discovered more than 4800 planets, but the stars they orbit are less massive than about four times the mass of our own Sun. Stars can be very much more massive, however. While the exact value of the largest possible stellar mass in today’s Universe remains uncertain, it is at least 100 solar masses. The donor star in M51 ULS-1 appears to have the luminosity and spectrum of a 20 to 30 solar mass star.

Chandra Studies Extraordinary Magnetar

Image of J1818
Magnetar J1818.0-1607
Credit: X-ray: NASA/CXC/Univ. of West Virginia/H. Blumer;
Infrared (Spitzer and Wise): NASA/JPL-CalTech/Spitzer

In 2020, astronomers added a new member to an exclusive family of exotic objects with the discovery of a magnetar. New observations from NASA's Chandra X-ray Observatory help support the idea that it is also a pulsar, meaning it emits regular pulses of light.

Magnetars are a type of neutron star, an incredibly dense object mainly made up of tightly packed neutrons, which forms from the collapsed core of a massive star during a supernova.

What sets magnetars apart from other neutron stars is that they also have the most powerful known magnetic fields in the Universe. For context, the strength of our planet's magnetic field has a value of about one Gauss, while a refrigerator magnet measures about 100 Gauss. Magnetars, on the other hand, have magnetic fields of about a million billion Gauss. If a magnetar was located a sixth of the way to the Moon (about 40,000 miles), it would wipe the data from all of the credit cards on Earth.

Einstein's Theory of Relativity, Critical for GPS, Seen in Distant Stars

The neutron star is shown in this artist's impression at the center of a disk of hot gas pulled away from its companion.
4U 1916-053, spectrum & illustration
Credit: Spectrum: NASA/CXC/University of Michigan/N. Trueba et al.; Illustration: NASA/CXC/M. Weiss

What do Albert Einstein, the Global Positioning System (GPS), and a pair of stars 200,000 trillion miles from Earth have in common?

The answer is an effect from Einstein's General Theory of Relativity called the "gravitational redshift," where light is shifted to redder colors because of gravity. Using NASA's Chandra X-ray Observatory, astronomers have discovered the phenomenon in two stars orbiting each other in our galaxy about 29,000 light years (200,000 trillion miles) away from Earth. While these stars are very distant, gravitational redshifts have tangible impacts on modern life, as scientists and engineers must take them into account to enable accurate positions for GPS.

While scientists have found incontrovertible evidence of gravitational redshifts in our solar system, it has been challenging to observe them in more distant objects across space. The new Chandra results provide convincing evidence for gravitational redshift effects at play in a new cosmic setting.

NASA's Great Observatories Help Astronomers Build a 3D Visualization of Exploded Star

In the year 1054 AD, Chinese sky watchers witnessed the sudden appearance of a "new star" in the heavens, which they recorded as six times brighter than Venus, making it the brightest observed stellar event in recorded history. This "guest star," as they described it, was so bright that people saw it in the sky during the day for almost a month. Native Americans also recorded its mysterious appearance in petroglyphs.

Observing the nebula with the largest telescope of the time, Lord Rosse in 1844 named the object the "Crab" because of its tentacle-like structure. But it wasn't until the 1900s that astronomers realized the nebula was the surviving relic of the 1054 supernova, the explosion of a massive star.

Now, astronomers and visualization specialists from the NASA's Universe of Learning program have combined the visible, infrared, and X-ray vision of NASA's Great Observatories to create a three-dimensional representation of the dynamic Crab Nebula. Certain structures and processes, driven by the pulsar engine at the heart of the nebula, are best seen at particular wavelengths.

A Magnetar-powered X-ray Transient as the Aftermath of a Binary Neutron-star Merger

Yongquan Xue
Yongquan Xue

We are pleased to welcome Yongquan Xue, a professor at the Department of Astronomy, University of Science and Technology of China (USTC), as a guest blogger. He is an astrophysicist whose main research field is X-ray high-energy astrophysics, and has been significantly involved in the Chandra Deep Fields. Yongquan led the Nature paper that is the subject of our latest press release on the discovery of a magnetar-powered X-ray transient. Before joining USTC in 2012, he worked at Penn State University as a postdoc, after obtaining his astrophysics B.S. and M.S. degrees at Peking University, and Ph.D. degree at Purdue University, respectively.

A neutron star is the compact object formed after a supernova explosion occurring in the late evolutionary stage of a massive star, and it is one of the most mysterious objects in the universe. It is composed of almost all neutrons, and has some extreme physical properties such as ultra-high density and a super-strong magnetic field. It is an excellent natural laboratory for testing basic physical laws. However, up to now, our understanding about the basic properties of neutron stars (e.g., the equation of state, which describes the relation among pressure, density, etc.) is still relatively vague.

A New Signal for a Neutron Star Collision Discovered

Image of XT2
CDF-S XT2
Credit: X-ray: NASA/CXC/Uni. of Science and Technology of China/Y. Xue et al; Optical: NASA/STScI

These images show the location of an event, discovered by NASA's Chandra X-ray Observatory, that likely signals the merger of two neutron stars. A bright burst of X-rays in this source, dubbed XT2, could give astronomers fresh insight into how neutron stars — dense stellar objects packed mainly with neutrons — are built.

Chandra Serves up Cosmic Holiday Assortment

This is the season of celebrating, and the Chandra X-ray Center has prepared a platter of cosmic treats from NASA's Chandra X-ray Observatory to enjoy. This selection represents different types of objects — ranging from relatively nearby exploded stars to extremely distant and massive clusters of galaxies — that emit X-rays detected by Chandra. Each image in this collection blends Chandra data with other telescopes, creating a colorful medley of light from our Universe.

Angle Matters: A New Perspective on Neutron Star Collisions Solves an Old Mystery

Eleonora Troja
Eleonora Troja

We are very pleased to welcome Eleonora Troja as our guest blogger. She is an associate research scientist at the University of Maryland, College Park, with a joint appointment at NASA Goddard Space Flight Center. She divides her time between her research on colliding neutron stars, directing the Swift Guest Investigator Program, and her three-year-old daughter, Bianca.

A year ago, on October 16th 2017, an amazing discovery was announced. GW170817, a collision of two neutron stars seen through gravitational waves and light, had realized the perfect union of two worlds. At the press conference organized by the National Science Foundation, a journalist asked an important question to the panelists: “Hadn’t we seen similar events before?” In that moment my mind ran back to an unusual gamma-ray burst, GRB150101B, localized by NASA’s Swift satellite nearly three years earlier.

GRB150101B was a flash of gamma-ray radiation that lasted for less than a fraction of a second. It was one of the weakest explosions ever seen with Swift, yet it was very luminous in X-rays and for a very long time. This was so unusual that Swift scientists were not sure whether the burst was a gamma ray burst (GRB) or another type of weird explosion, and dubbed it with a dual name GRB 150101B / SwiftJ123205.1-1056. I asked that NASA’s Chandra X-ray Observatory observe this object and help us unravel the mystery of its nature. Chandra revealed that there were two sources of X-ray light, not resolved by the Swift observations. A bright X-ray source was located at the center of the galaxy, probably indicating the presence of a supermassive black hole. Next to it, Chandra discovered a weaker X-ray signal coming from GRB150101B. At the same position, telescopes caught a glow of visible light which quickly faded away.

Pages

Disclaimer: This service is provided as a free forum for registered users. Users' comments do not reflect the views of the Chandra X-ray Center and the Harvard-Smithsonian Center for Astrophysics.
Please note this is a moderated blog. No pornography, spam, profanity or discriminatory remarks are allowed. No personal attacks are allowed. Users should stay on topic to keep it relevant for the readers.
Read the privacy statement