CXC Home | Search | Help | Image Use Policy | Latest Images | Privacy | Accessibility | Glossary | Q&A
Tour: NASA's Chandra Catches Spider Pulsars Destroying Nearby Stars
A horde of dead stars known as “spider pulsars” are obliterating companion stars within their reach. Data from NASA’s Chandra X-ray Observatory of the globular cluster Omega Centauri are helping astronomers understand how these spider pulsars prey on nearby stars.
A pulsar is the spinning dense core that remains after a massive star collapses into itself. Rapidly rotating neutron stars can produce beams of radiation. Like a rotating lighthouse beam, the radiation can be observed as a powerful, pulsing source of radiation, or pulsar. Some pulsars spin around dozens to hundreds of times per second, and these are known as millisecond pulsars.
Spider pulsars are a special class of millisecond pulsars, and get their name for the damage they inflict on small companion stars in orbit around them. Through winds of energetic particles streaming from their surfaces, the spider pulsars methodically strip the companion stars of their outer layers.
Astronomers recently discovered 18 millisecond pulsars in Omega Centauri — located about 17,700 light-years from Earth — using radio telescopes. A pair of astronomers from the University of Alberta in Canada then looked at Chandra data of Omega Centauri to see if how many of the millisecond pulsars give off X-rays.
They found 11 millisecond pulsars emitting X-rays, and five of those were spider pulsars concentrated near the center of Omega Centauri. The researchers next combined the data of Omega Centauri with Chandra observations of 26 spider pulsars in 12 other globular clusters.
Spider pulsars are typically separated from their companions by only about one to 14 times the distance between the Earth and Moon. This close proximity — cosmically speaking — causes the energetic particles from the pulsars to be particularly damaging to their companion stars.
Chandra's sharp X-ray vision is crucial for studying millisecond pulsars in globular clusters because they often contain large numbers of X-ray sources in a small part of the sky, making it difficult to distinguish sources from each other.