News by Date
News by Category
Solar System
White Dwarfs
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Galaxy Clusters
Cosmology/Deep Field
Press Resources
Status Reports
Press Advisories
Image Releases
Release Guidelines
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Related Links

Chandra @ NASA
Visit the Chandra pages at the NASA portal (opens in new window)
Image Use
Image Use Policy & Request Form
Guidelines for utilizing images, applets, movies, and animations featured in this Web Site.
NASA's Chandra Finds Youngest Nearby Black Hole

For Release: November 15, 2010


SN 1979C
Credit: X-ray: NASA/CXC/SAO/D.Patnaude et al, Optical: ESO/VLT, Infrared: NASA/JPL/Caltech
Press Image and Caption

Astronomers using NASA's Chandra X-ray Observatory have found evidence of the youngest black hole known to exist in our cosmic neighborhood. The 30-year-old black hole provides a unique opportunity to watch this type of object develop from infancy.

The black hole could help scientists better understand how massive stars explode, which ones leave behind black holes or neutron stars, and the number of black holes in our galaxy and others.

The 30-year-old object is a remnant of SN 1979C, a supernova in the galaxy M100 approximately 50 million light-years from Earth. Data from Chandra, NASA's Swift satellite, the European Space Agency's XMM-Newton and the German ROSAT observatory revealed a bright source of X-rays that has remained steady during observation from 1995 to 2007. This suggests the object is a black hole being fed either by material falling into it from the supernova or a binary companion.

"If our interpretation is correct, this is the nearest example where the birth of a black hole has been observed," said Daniel Patnaude of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. who led the study.

The scientists think SN 1979C, first discovered by an amateur astronomer in 1979, formed when a star about 20 times more massive than the Sun collapsed. Many new black holes in the distant universe previously have been detected in the form of gamma-ray bursts (GRBs).

However, SN 1979C is different because it is much closer and belongs to a class of supernovas unlikely to be associated with a GRB. Theory predicts most black holes in the universe should form when the core of a star collapses and a GRB is not produced.

People Who Read This Also Read...

"This may be the first time the common way of making a black hole has been observed," said co-author Abraham Loeb, also of the Harvard-Smithsonian Center for Astrophysics. "However, it is very difficult to detect this type of black hole birth because decades of X-ray observations are needed to make the case."

The idea of a black hole with an observed age of only about 30 years is consistent with recent theoretical work. In 2005, a theory was presented that the bright optical light of this supernova was powered by a jet from a black hole that was unable to penetrate the hydrogen envelope of the star to form a GRB. The results seen in the observations of SN 1979C fit this theory very well.

Although the evidence points to a newly formed black hole in SN 1979C, another intriguing possibility is that a young, rapidly spinning neutron star with a powerful wind of high energy particles could be responsible for the X-ray emission. This would make the object in SN 1979C the youngest and brightest example of such a "pulsar wind nebula" and the youngest known neutron star. The Crab pulsar, the best-known example of a bright pulsar wind nebula, is about 950 years old.

"It's very rewarding to see how the commitment of some of the most advanced telescopes in space, like Chandra, can help complete the story," said Jon Morse, head of the Astrophysics Division at NASA's Science Mission Directorate.

The results will appear in the New Astronomy journal in a paper by Patnaude, Loeb, and Christine Jones of the Harvard-Smithsonian Center for Astrophysics.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge.

More information, including images and other multimedia, can be found at: and

Media contacts:
Trent Perrotto
Headquarters, Washington

Janet Anderson
NASA Marshall Space Flight Center, Ala.

Megan Watzke
Chandra X-ray Center, Cambridge, Mass.

Visitor Comments (32)

It is so pretty almost reminds me of a sparkling diamond.

Posted by Tamaya Cole on Friday, 12.9.16 @ 09:01am

Dear shakti,
Thanks for your question. The matter remains locked up inside the black hole, so it keeps on getting bigger and bigger.
-P. Edmonds, CXC

Posted by P. Edmonds on Friday, 11.9.12 @ 11:31am

Where does all the matter the black hole gobbles up go? Matter can't be destroyed, so it must be either transforming or going somewhere?

Posted by shakti on Monday, 10.15.12 @ 21:24pm

Can anyone explain me why the core of this galaxy region observed in X rays has such a size? I can imagine that a supermassive BH with an accretion disk would not be so extended. Are these many small active black holes together that make this big spot in the center?
thanks for answering

Posted by Martin Masan on Thursday, 02.10.11 @ 08:15am

Isn't the center of the Milky Way a black hole?

Posted by shelli on Saturday, 12.4.10 @ 19:46pm

I think Nicholas' comments make a lot of sense.

Posted by Ted Pringle on Saturday, 11.27.10 @ 22:08pm

Kyle, The black hole will not swallow us. Let's put things into perspective, the Milky Way galaxy is about 100,000 light years across and this galaxy is 50 million light years away. The black hole is small relative to the immense space between our galaxy and its galaxy. However, you do bring up an important point that this black hole is a reminder of how fragile life on Earth is. There are a number of stars relatively close to us, 1,000 light years, that could have went supernova 999 years ago, and us Earthlings will receive the electromagnetic radiation next year.

Posted by Nicholas on Friday, 11.19.10 @ 23:41pm

Kyle black holes do not "expand" in the contrary. When a large star loses its energy it will result in a supernova. Remaining matter can, under certain conditions, form a black hole, which should not be larger than a tennis ball. This mass is dense enough that light cannot escape from there. Thus a black hole. We should be save. Even if our sun stops, it will not form a black hole.

Posted by David in t Veld on Friday, 11.19.10 @ 15:11pm

So if I get it right, we see it how it was like 50 million years ago. I wonder at what rate does this black hole expands? One more question, I didn't really understand how big is this black hole. So, 72,000 - 58,000 light years means like 4176000000? That doesn't mean it would've swallowed us by now?
If it expands with the rate of the speed of light, that means in 50 million years we should be gone, along side with our galaxy.
If someone can illuminate me I'd be glad, because it's really a fascinating subject.
Thank you

Posted by Kyle on Friday, 11.19.10 @ 09:09am

Interesting, and thank you for sharing.

Posted by rick on Thursday, 11.18.10 @ 19:14pm

Since SN-1979C was discovered in 1979, is there any other pictures-records from this object to follow what happened in 2-3 years after the supernova, or the telescope just aimed back on the SN-1979C in 2010, which means that we lost the data between 1979 and 2010 and missed the actual creation of the singularity? I really got excited when I read this great work and I'll definitely keep following this.

Posted by David in t Veld on Thursday, 11.18.10 @ 17:36pm

Dear Dorin,
No, we're safe from this black hole.
P. Edmonds for CXC

Posted by P Edmonds on Thursday, 11.18.10 @ 16:01pm

Dear Alexander,
No, the black hole is much too far away from the Earth to have any effect on us.
P. Edmonds for CXC

Posted by P. Edmonds on Thursday, 11.18.10 @ 15:58pm

Dear Liang,
The very young age of about 30 years for the black hole is the observed value, that is the age of the remnant as it appears in the image. Astronomers quote ages in this way because of the observational nature of their field, where their knowledge of the Universe is based almost entirely on the electromagnetic radiation received by telescopes.

An analogy involving photography may help. People collect photos of their family and loved ones. It doesn't matter when the photo was taken - the person in that image is captured in that particular moment of time. For instance, it is possible to look at a photo of your grandfather when he was only five years old, even though in today's time frame he is an older man.
In astronomy, the images we get from modern telescopes are equivalent to these snapshots. It may have taken very long for the photo of SN 1979C to be delivered to us - some 50 million years - but it represents a roughly 30-year-old object to us.

P. Edmonds for CXC

Posted by P. Edmonds on Thursday, 11.18.10 @ 15:56pm

If pictures of the supernova, as seen in 1979, are pasted comparisons and understanding will be easier for us.

Posted by AK Sharma on Thursday, 11.18.10 @ 11:05am

This really is a find.

Posted by Mark Ballington on Thursday, 11.18.10 @ 06:39am

To the people confused with the age of the Black hole.
If the Black hole is 50 million light years away, and on Earth it was observed to have gone supernova 30 years ago then the actual event happened 50 million years. 30 years 50,000,030 years ago.
What NASA is doing, is sharing whatever information they have gathered through observing the Black holes evolution over the past three decades.
Much thanks to the Chandra team and NASA for their dedication, keep up the good work guys.

Posted by Saud on Thursday, 11.18.10 @ 02:16am

Yes, the black hole is 50 million light years away which makes its light we see 50 million years old. At the moment we are seeing the light from the black hole as it was 30 years old. In essence, we are looking back in time as it were 50 million years ago. And no, it can't hurt us unless its north or south pole was aimed directly at earth which in turn would incinerate the planet with its gamma ray bursts.

Posted by Dan on Thursday, 11.18.10 @ 01:11am

SN 1979C was first reported to be seen by an amateur astronomer in 1979, Why you do not write down the name of the amateur astronomer who did the discovery? This seems to be quite not right.

Posted by Plamen Fiziev on Thursday, 11.18.10 @ 00:04am

What a golden opportunity to study a Black Hole in its infancy. Very fascinating indeed.
We are in no danger from this Black Hole. Much has been learned about these very fascinating objects. Go to your public library and read as many books as you can about them. Search in your favorite search engine, you will find much about them.

Marvin L. S.

Posted by Marvin L. S. on Wednesday, 11.17.10 @ 17:07pm

We are looking at the conditions after SN-1979C 30 years after it exploded. Even though it is 50 million years old in that end of the universe, we are effectively looking back in time and won't know its "current" condition until 50m years from now. So from our perspective, this black hole is only 30 years old.

Posted by Crim on Wednesday, 11.17.10 @ 15:41pm

Outstanding. If you can pin down the type of star that ends up as a black hole, that would be significant information.

Posted by Don and Sherry Berry on Wednesday, 11.17.10 @ 10:36am

Black holes are fascinating. Well done guys.

Posted by ashbashlottie on Wednesday, 11.17.10 @ 06:52am

Elegant indeed.
But, since Virgo Cluster is 50 million light years away from us, and we just saw the SN 1979C, doesn't it mean that at the moment, the black hole in question is a wee bit older than 30 years? Like 50 million years older.
This is yesterday's news people. Just kidding. This is awesome discovery. Keep it up, guys.

Posted by dorin palanciuc on Wednesday, 11.17.10 @ 03:38am

Does it mean we are not safe?

Posted by andrew on Tuesday, 11.16.10 @ 23:51pm

Is it 50 million light years away? that means that the light it generates takes 50 million years to reach us, right? why the article says it has only 30 years? or did the article means that it was discovered 30 years ago? I'm confused by those numbers.

Posted by Rafael on Tuesday, 11.16.10 @ 22:31pm

Keep up the good work and continue to inform the uninformed.

Posted by Willie Thoman on Tuesday, 11.16.10 @ 20:19pm

On TV they say that might be the end of the world. Could this "young black hole" eat our planet?

Posted by alexander on Tuesday, 11.16.10 @ 16:08pm

Nice, Hawking should be happy now.

Posted by Jesse Candido on Tuesday, 11.16.10 @ 15:06pm

The SN 1979C is age of 50 millon light years not 30-year age.

Posted by liang on Tuesday, 11.16.10 @ 07:03am


Posted by ATOMEI on Monday, 11.15.10 @ 14:09pm

This is so cool. The black holes have always fascinate me.
But this is the opportunity to study the life of a black hole. This is the opportunity we were waiting for.

Posted by anacit15 on Monday, 11.15.10 @ 13:59pm