Images by Date
Images by Category
Solar System
Stars
Exoplanets
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
4K JPG
Multiwavelength
Sky Map
Constellations
Photo Blog
Top Rated Images
Image Handouts
Desktops
Fits Files
Visual descriptions
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
New Decade Brings Another Dimension to Study Space: Animations
A Tour of 3D Visualizations
(Credit: NASA/CXC/A. Hobart)
[Runtime: 02:09]

With closed-captions (at YouTube)

Since ancient times, the study of astronomy has largely been limited to the flat, two-dimensional projection of what appears on the sky. However, just like a botanist puts a plant under a microscope or a paleontologist digs for fossils, astronomers want more "hands on" ways to analyze objects in space.

As one decade ends and another begins, astronomers are exploring ways to combine ingenious techniques with rich datasets from powerful modern telescopes to move from studying objects in two dimensions to studying them in three.

These computer simulations represent an exciting step in that direction. Each of these is a three-dimensional (3D) visualization of an astronomical object based on data from NASA's Chandra X-ray Observatory and other X-ray observatories. While unable to fly to these distant objects and travel around them, astronomers have used the data they can gather from Chandra and other X-ray observatories to learn about the geometry, velocity, and other physical properties of each of these cosmic sources.

Each of these computer simulations is available to the public on free software that is supported by most platforms and browsers and allows users to interact with and navigate 3D models as they choose. The objects include jets blasting away from infant stars, a star that changes its brightness wildly over time, and some of the most well-known supernova explosions such as Cassiopeia A and SN 1987A. We invite you to explore these cosmic objects like you never have before.


A Quick Look at 3D Visualizations
(Credit: NASA/CXC/A. Hobart)
[Runtime: 01:12]

A new collection of 3D visualizations of cosmic objects based on data from NASA's Chandra X-ray Observatory and other X-ray telescopes has been released.

These visualizations allow astronomers to have more "hands on" ways to explore distant sources that they can never physically manipulate.

Some astronomical data, including X-rays that Chandra detect, contain three-dimensional information that can be carefully extracted and analyzed.

By combining these data with computer simulations, researchers can reconstruct these objects that can be millions of trillions of miles away.

Astronomers can use these new 3D visualizations to learn more about their physical properties including geometry, velocity and more.

Each of these simulations is available to the public in free software that is supported by most platforms and browsers.


Compilation of 3D Models
(Credit: NASA/CXC/INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando)
[Runtime: 00:28]

Since ancient times, the study of astronomy has largely been limited to the flat, two-dimensional projection of what appears on the sky. However, just like a botanist puts a plant under a microscope or a paleontologist digs for fossils, astronomers want more "hands on" ways to visualize objects in space.

A new set of computer simulations represents an exciting step in that direction. Each is a three-dimensional (3D) visualization of an astronomical object based on data from NASA's Chandra X-ray Observatory and other X-ray observatories. While unable to fly to these distant objects and travel around them, astronomers have used data from these observatories to learn about the geometry, velocity, and other physical properties of each of these cosmic sources.

This compilation of 3D visualizations was created by Salvatore Orlando of the National Institute for Astrophysics (INAF), Osservatorio Astronomico di Palermo and his colleagues. Each of these computer simulations is available using free software that is supported by most platforms and browsers and allows users to interact with and navigate 3D models as they choose.

In the near future, such 3D models will be made available in "virtual reality" or VR environments, and two prototypes (Tycho and UScorpii) are currently on the Chandra website.


DG Tau
(Credit: INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando)
[Runtime: 00:50]

Navigate & interact with this 3D model (at Sketchfab)

According to current theories, material falls onto a developing star, known as a "protostar," from a surrounding disk. The interaction between this rotating disk and the nascent star leads to the narrowing of material into jets that blast away from the magnetic poles of the would-be star. These stellar jets, detected in X-rays by Chandra, generate shock waves similar to those produced by supersonic jets. A paper led by Sabina Ustamujic (INAF, Osservatorio Astronomico di Palermo) compares their 3D computer models with data from two young stars observed with Chandra. Results from earlier observations of one of these targets, DG Tau, are described here.


Cassiopeia A
(Credit: INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando)
[Runtime: 1:07]

Navigate & interact with this 3D model (at Sketchfab)

A massive star may end its life in a giant explosion known as a supernova, and the resulting structure is known as a supernova remnant. By modeling this supernova remnant in three dimensions, Orlando and his collaborators have shown that the massive clumps that developed soon after the star's explosion are likely responsible for the asymmetrical shape of Cas A. They calculated the kinetic energy (energy of motion) and masses of iron, silicon and sulfur involved in the explosion that could have been seen from Earth about 340 years ago.


U Scorpii
(Credit: INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando)
[Runtime: 00:31]

Navigate & interact with this 3D model (at Sketchfab)
Navigate this model in virtual reality on a smartphone

A nova is a star that suddenly becomes tens to hundreds of times brighter, then fades to its former brightness in just a few months. In these nova systems, a white dwarf — the compact remains of a Sun-like star that has burned all of its fuel — pulls material from a nearby companion star until enough accumulates to trigger a thermonuclear explosion on the white dwarf's surface. This 3D simulation, reported in a paper by Jeremy Drake (Center for Astrophysics | Harvard & Smithsonian) and Orlando, explores the first 18 hours after the last outburst observed on January 28, 2010 in U Scorpii. Astronomers have seen U Scorpii erupt about once every decade, so this system is due for another outburst very soon.


SN 1006
(Credit: INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando)
[Runtime: 00:37]

Navigate & interact with this 3D model (at Sketchfab)

This 3D model, reported in a paper led by Orlando, shows the SN 1006 supernova remnant that resulted from the powerful explosion and complete destruction of a white dwarf star. The model helps explore how the clumping of material after the explosion and the acceleration of high-energy particles affects the structure of the remnant. A ball of fiery-looking stellar debris and heavy elements has been shot into the interstellar medium with speeds of tens of thousands of miles per hour. The material is heated up to temperatures of tens of millions of degrees that Chandra observes in X-ray light.


SN 1987A
(Credit: INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando)
[Runtime: 00:28]

Navigate & interact with this 3D model (at Sketchfab)

On February 23, 1987, a bright supernova was discovered in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. Called SN 1987A, this supernova was only visible from Earth's southern hemisphere and represented the explosion of a massive star. The supernova's expanding remnant offers the opportunity to unveil the physical processes associated with the supernova and the final stages of stellar evolution. This computer model from a paper by Orlando and collaborators shows the remnant in 2017, incorporating data taken by Chandra, ESA's XMM-Newton and Japan's Advanced Satellite for Cosmology and Astrophysics (ASCA).


Tycho
(Credit: INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando)
[Runtime: 00:39]

Navigate & interact with this 3D model (at Sketchfab)
Navigate this model in virtual reality on a smartphone

This 3D model based on a paper led by Orlando is a representation of an object called Tycho's supernova remnant. Skywatchers recorded the original stellar explosion in the year 1572 AD, and its remnant is named for the 16th century astronomer Tycho Brahe, who famously described the supernova. Like SN 1006, Tycho has resulted from the explosion of a white dwarf star. The model shows how Tycho's supernova remnant might appear at an age of 1,000 years, after evolving from its current age of 447 years. The stellar debris contains a cutout section to show the interior of the remnant. While some supernovas generate neutron stars and black holes, this one merely left an empty shell of material.




Return to New Decade Brings Another Dimension to Study Space (January 22, 2020)