Chandra Mission
Mission Overview
Where's Chandra
Tracking Chandra
Top 10 Facts
Naming Chandra
The CXC
Mission Milestones
Launch/Deployment
Hardware
Chandra Hardware
Telescope System
Science Instruments
Spacecraft
Interactive Chandra
Who's Who
Web Shortcuts
Chandra Blog
RSS Feed
Chandra Mobile
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Spacecraft

Motion, Heat, and Energy


The spacecraft system provides the support structure and environment necessary for the telescope and the science instruments to work as an observatory.

Solar Arrays
Thrusters

In order to provide motion to the observatory, Chandra has two different sets of thrusters: one for propulsion and the other for momentum unloading. The propulsion thrusters were used immediately after launch to help propel Chandra into its final orbit, which is elliptical and very high in altitude. The momentum unloading thrusters are periodically used to apply torques to Chandra and, thereby, lower the accumulated momentum in its reaction wheels, which are used to control Chandra's altitude.

To control the temperatures of critical components, Chandra's thermal control system consists of a cooling radiator, insulators, heaters and thermostats. It is particularly important that the temperature near the X-ray mirrors be well controlled to keep the mirror in focus. The temperature in many parts of the spacecraft is continually monitored and reported back to mission control.

Chandra's electrical power comes from its solar arrays. This energy is then stored in three banks of batteries and distributed in a carefully regulated manner to the Observatory by the electrical power system. The solar arrays generate approximately two kilowatts of power for the heaters, science instruments, computers, transmitters, etc.

plus