Images
X-ray Images
Chandra Mission
X-ray Astronomy
Chandra People
Podcasts
Chandra in HD
Standard Definition
The Invisible Sky
Two Inch Universe
By Date/Category
Other Features
Animations & Video
Special Features
Audio
Resources
Q & A
Glossary
Acronym Guide
Further Reading
Desktop Images
iPhone Wallpapers
By Date/Category
Miscellaneous
Handouts
Image Handouts
Chandra Lithographs
Educational Activities
Printable Games
Chandra Fact Sheets
Presentations
Entire Collection
By Date
By Category
Presentations
Web Shortcuts
Chandra Blog
RSS Feed
Chandra Mobile
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Recent Podcast
Introduction to OpenFITS
Introduction to OpenFITS
We would like to step through our new tutorial on creating a multiwavelength composite image of M101 using GIMP. (2015-01-23)
Problems Viewing?
Having trouble viewing a movie? Make sure you update your video plug-ins. Visit our download center for help.
Animations & Video: Featured Image Tours
Click for high-resolution animation
1. Tour of NGC 2392
QuicktimeMPEG Audio Only Stars like the Sun can become remarkably photogenic at the end of their lives. A good example is NGC 2392, which is located about 4,200 light years from Earth. NGC 2392, which is nicknamed the "Eskimo Nebula", is what astronomers call a planetary nebula. This name, however, is deceiving because planetary nebulas actually have nothing to do with planets. The term is simply a historic relic since these objects looked like planetary disks to astronomers in earlier times looking through small optical telescopes. Instead, planetary nebulas form when a Sun-like star uses up all of the hydrogen in its core, which our Sun will in about 5 billion years from now. When this happens, the star begins to cool and expand, increasing its radius by tens to hundreds of times its original size. Eventually, the outer layers of the star are swept away by a slow and thick wind, leaving behind a hot core. This hot core has a surface temperature of about 50,000 degrees Celsius, and is ejecting its outer layers in a fast wind traveling 6 million kilometers per hour. The radiation from the hot star and the interaction of its fast wind with the slower wind creates the complex and filamentary shell of a planetary nebula. Eventually the central star will collapse to form a white dwarf star. X-ray data from NASA's Chandra X-ray Observatory show the location of million-degree gas near the center of NGC 2392. Data from the Hubble Space Telescope reveal the intricate pattern of the outer layers of the star that have been ejected. Taken together, these data from today's space-based telescopes provide us with spectacular views of planetary nebulas that our scientific ancestors - those that thought these objects were associated with planets -- probably could never have imagined.
[Runtime: 02:17]
(NASA/CXC/J. DePasquale)

Related Chandra Images:

Click for high-resolution animation
2. Tour of NGC 602
QuicktimeMPEG Audio Only The Small Magellanic Cloud - also known as the SMC - is one of the closest galaxies to the Milky Way. Because the SMC is so close and bright, it offers a chance to study phenomena that are difficult to examine in more distant galaxies. Chandra has been used to make the first detection of X-ray emission from young, low-mass stars outside our Milky Way galaxy. By "low-mass" we mean with masses similar to our Sun. The Chandra observations of these low-mass stars were made of the region known as the "Wing" of the SMC. In this composite image of the Wing the Chandra data is shown in purple, optical data from the Hubble Space Telescope is shown in red, green and blue and infrared data from the Spitzer Space Telescope is shown in red. The Wing differs from most areas in the Milky Way by having relatively few metals, that is elements heavier than hydrogen and helium. The Chandra results imply that the young, metal-poor stars in NGC 602a make X-rays just like stars with much higher metal content in our galaxy make X-rays.
[Runtime: 01:22]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
3. Tour of NGC 6240
QuicktimeMPEG Audio Only Two large galaxies are colliding and scientists have used Chandra to make a detailed study of an enormous cloud of hot gas that surrounds them. This unusually large reservoir of gas contains as much mass as about 10 billion Suns, spans about 300,000 light years, and radiates at a temperature of more than 7 million degrees. This giant gas cloud, which scientists call a "halo," is located in the system known as NGC 6240. As the galaxies - each about the size and shape of our Milky Way -- merge, the gas contained in individual galaxy has been violently stirred up. This caused a baby boom of new stars that has lasted for at least 200 million years. During this burst of stellar birth, some of the most massive stars raced through their evolution and exploded relatively quickly as supernovas. According to researchers, this created new hot gas enriched with important elements -- such as oxygen, neon, and magnesium -- that expanded into and mixed with cooler gas that was already there. In the future, the two spiral galaxies will probably form one young elliptical galaxy over the course of millions of years. It is unclear, however, how much of the hot gas can be retained by this newly formed galaxy, or if it will be lost to surrounding space. Regardless, the collision in NGC 6240 offers the opportunity to witness a relatively nearby version of an event that was common in the early Universe.
[Runtime: 02.06]
(NASA/CXC/J. DePasquale)

Related Chandra Images:

Click for high-resolution animation
4. Tour of Sagittarius A*
QuicktimeMPEG Audio Only Jets of high-energy particles are found throughout the Universe on large and small scales. They are produced by young stars and by giant black holes. Jets play important roles in transporting energy away from the central object and, on a galactic scale, in regulating the rate of formation of new stars.

Because of that, astronomers have been searching for decades for a jet from the Milky Way's black hole known as Sagittarius A*. Over the years, there have been several reports of hints of a jet from Sgr A*, but none was conclusive. A new study involving data from NASA's Chandra X-ray Observatory and the Very Large Array, however, has provided the best case yet for a jet from our Galaxy's supermassive black hole.

One piece of evidence is a straight line of X-rays that points to Sgr A*. Another is the discovery of a shock front - akin to a sonic boom - seen in radio data, where the jet appears to be striking a cloud of gas. By combining these clues with other information, astronomers think they have the strongest evidence to date for a jet blasting out of Sgr A*. The likely discovery of a jet from Sgr A* helps astronomers learn more about the giant black hole, including how it is spinning.
[Runtime: 01:32]
(NASA/CXC/April Jubett)

Related Chandra Images:

Click for high-resolution animation
5. Tour of SGR 0418+5729
QuicktimeMPEG Audio Only A magnetar is a type of neutron star that occasionally generates bursts of X-rays. They usually have a very strong magnetic field on their surface, ten to a thousand times stronger than for an average neutron star. Now, astronomers have spotted a magnetar, called SGR 0418, with a much lower magnetic field on its surface. Data from Chandra and several other X-ray observatories was used to make this measurement. The magnetar is seen as the pink source in the middle of this image combining Chandra data with optical and infrared data. SGR 0418 is located in our galaxy about 6,500 light years from Earth. In this artist's impression we see a close-up view of SGR 0418, with a weak magnetic field on the surface and a much stronger magnetic field in the interior. These results suggest that magnetars might be much more common than previously thought. They also tell us about the massive stars and supernova explosions that create magnetars.
[Runtime: 01:28]
(NASA/CXC/J. DePasquale)

Related Chandra Images:

Click for high-resolution animation
6. Tour of Vela Pulsar
QuicktimeMPEG Audio Only Unlike with some Hollywood films, a sequel of a movie from NASA's Chandra X-ray Observatory is better than the first. The star of this Chandra movie is the Vela pulsar, a neutron star that was formed when a massive star collapsed. The Vela pulsar is about 1,000 light years from Earth, spans about 12 miles in diameter, and makes a complete rotation in 89 milliseconds, which is faster than a helicopter rotor. As the pulsar whips around, it spews out a jet of charged particles that race out along the pulsar's rotation axis at about 70% the speed of light. The new Chandra data, which were obtained from June to September 2010, suggest that the jet may be slowly wobbling, or precessing, as it spins. The first Chandra movie of Vela came out in 2003, but its shorter and unevenly spaced exposures did not provide clear evidence for precession of the pulsar. If the Vela saga becomes a trilogy, maybe more secrets of this exotic object will be revealed.
[Runtime: 01.09]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
7. Tour of W49B
QuicktimeMPEG Audio Only The supernova remnant known as W49B is, let's say, a bit unorthodox looking. Many supernova remnants appear rather spherical in shape. This is in large part because astronomers think that most supernovas explode more or less evenly in all directions. W49B, however, is an exception to that rule. Researchers instead think that the star that created W49B ejected more material at higher speeds from its poles than from its equator during its explosion. The result is this unusual barrel-shaped remnant we see today. While most supernovas leave behind a dense rotating core called a neutron star, there is no evidence that one is present within W49B. This and other evidence suggest that an even more exotic object, that is, a black hole, was produced during the explosion. Since W49B's explosion occurred about a thousand years ago as seen from Earth, this means this may be the most recent black hole formed in our Milky Way galaxy.
[Runtime: 01.13]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
8. A Tour of SN 1957D in M83
QuicktimeMPEG Audio Only Over fifty years ago, a supernova was discovered in M83, a spiral galaxy about 15 million light years from Earth. This supernova was dubbed SN 1957D because it was the fourth one detected in the year of 1957.
[Runtime: 01:13]
(X-ray: NASA/CXC/STScI/K.Long et al., Optical: NASA/STScI)

Related Chandra Images:
  • Photo Album: M83

Click for high-resolution animation
9. Tour of 3C186
QuicktimeMPEG A galaxy cluster containing a structure never previously seen so far from Earth has been observed by NASA's Chandra X-ray Observatory. The cluster is also interesting to astronomers because a bright quasar, known as 3C 186, is found at its center. Dr. Aneta Siemiginowska of the Harvard-Smithsonian Center for Astrophysics led the team's research on this result and discusses it with us.
[Runtime: 03.30]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
10. Tour of A 30
QuicktimeMPEG Audio Only A planetary nebula is formed in the late stage of the evolution of a sun-like star, after it expands to become a red giant. These images show the planetary nebula A30, located about 5500 light years from Earth, which is going through a special, rarely-seen phase of evolution. The planetary nebula formed, but then the star briefly reverted to being a red giant. The evolution of the planetary nebula then restarted, making it reborn. Here is a close-up view of A30, showing X-ray data from Chandra in purple and optical data from Hubble in orange. A larger view shows optical and X-ray data from Kitt Peak and XMM-Newton, respectively, where the optical data is colored orange, green and blue, and X-ray emission is colored purple.
[Runtime: 01:04]
(NASA/CXC/A. Hobart)

Related Chandra Images: