Images
X-ray Images
Chandra Mission
X-ray Astronomy
Chandra People
Podcasts
Chandra in HD
Standard Definition
The Invisible Sky
Two Inch Universe
By Date/Category
Other Features
Animations & Video
Special Features
Audio
Resources
Q & A
Glossary
Acronym Guide
Further Reading
Desktop Images
iPhone Wallpapers
By Date/Category
Miscellaneous
Handouts
Image Handouts
Chandra Lithographs
Educational Activities
Printable Games
Chandra Fact Sheets
Presentations
Entire Collection
By Date
By Category
Presentations
Web Shortcuts
Chandra Blog
RSS Feed
Chandra Mobile
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Recent Podcast
Tour of NGC 2207
Tour of NGC 2207
When galaxies get together, there is also the chance of a spectacular light show. (2014-12-16)
Problems Viewing?
Having trouble viewing a movie? Make sure you update your video plug-ins. Visit our download center for help.
Animations & Video: Featured Image Tours
Click for high-resolution animation
1. Tour of M82X-2
QuicktimeMPEG Audio Only Ultraluminous X-ray Sources, or ULXs, are unusual objects. They are rare and, as their name implies, give off enormous amounts of X-rays. Until now, astronomers thought that ULXs were powered by a system where a stellar mass black hole was in orbit around a neutron star or black hole. However, a study using data from NASA's NuSTAR and Chandra X-ray Observatory shows that this class of objects is more diverse than that. With NuSTAR, astronomers discovered regular variations, or pulsations, coming from a small region in the center of the galaxy M82, which is located about 11.4 million light years from Earth. The researchers then used Chandra, with its exceptionally keen vision in X-ray light, to pinpoint exactly which source was giving off these pulsations. This source is called M82X-2. It's hard to explain how a system with a black hole could generate the pulsations seen by NuSTAR. Because of this and other data, astronomers think that M82X-2 is the brightest pulsar ever seen. Pulsars are rapidly spinning neutron stars that sweep beams of radiation out like a lighthouse, and this is what would explain the pulsations of X-ray light seen in M82X-2. ULXs just became a little more unusual and intriguing to study.
[Runtime: 01:43]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
2. Tour of NGC 4258 (M106)
QuicktimeMPEG Audio Only NGC 4258, also known as Messier 106, is a spiral galaxy like the Milky Way. This galaxy is famous, however, for something that our Galaxy doesn’t have – two extra spiral arms that glow in X-ray, optical, and radio light. These features, or anomalous arms, are not aligned with the plane of the galaxy, but instead intersect with it. The X-ray image from Chandra reveals huge bubbles of hot gas above and below the plane of the galaxy. These bubbles indicate that much of the gas that was originally in the disk of the galaxy has been heated to millions of degrees and ejected into the outer regions by the jets from the black hole. The ejection of gas from the disk by the jets has important implications for the fate of this galaxy. Researchers estimate that all of the remaining gas will be ejected within the next 300 million years -- very soon on cosmic time scales – unless it is somehow replenished. Without this gas, relatively few stars can form there. In fact, scientists estimate that that star formation in the central region of NGC 4258 is already being choked off, with stars forming at a rate ten times less than in the Milky Way galaxy.
[Runtime: 01:42]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
3. Tour of Perseus Cluster and Virgo Cluster
QuicktimeMPEG Audio Only Galaxy clusters are enormous. In fact, they are the largest objects in the Universe held together by gravity. Just one galaxy cluster can contain hundreds or even thousands of individual galaxies. And what may be more interesting is that these galaxies make up just a fraction of the mass in these clusters. In addition to dark matter, the bulk of the mass in clusters actually comes from vast amounts of very thin gas. This gas is so hot that it only reveals itself in X-ray light. For many years, scientists have wondered why the hot gas doesn't cool and form lots of stars. With Chandra, astronomers have looked at many galaxy clusters, and in some, they found giant cavities carved out of the hot gas. They realized that the supermassive black holes at the centers of these clusters were pumping energy out into the gas through powerful jets. Now researchers have direct evidence for just how that energy keeps the gas in the entire galaxy cluster so hot. The answer may be turbulence. The same phenomenon that causes a bumpy airplane ride also prevents the hot gas in these galaxy clusters from ever settling down enough to cool. So while there are still many new things to learn about galaxy clusters, scientists may be finally homing in on the answer to one question that they have been asking for decades.
[Runtime: 01:35]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
4. Tour of Puppis A
QuicktimeMPEG Audio Only The destructive results of a powerful supernova explosion are seen in a delicate tapestry of X-ray light in this new image. The remnant is called Puppis A, which could have been witnessed on Earth about 3,700 years ago and is about 10 light years across. This image is the most complete and detailed X-ray view of Puppis A ever obtained, made by combining a mosaic of different Chandra and XMM-Newton observations. In this image, low-energy X-rays are shown in red, medium-energy X-rays are in green and high energy X-rays are colored blue.
[Runtime: 00:48]
(NASA/CXC/April Jubett)

Related Chandra Images:

Click for high-resolution animation
5. Tour of RX J1131-1231
QuicktimeMPEG Audio Only Black holes seem like such mysterious and complicated objects. On one hand, they are, and astronomers have been studying them for decades to learn more. On the other, black holes are actually quite simple. By this, we mean that black holes are defined by just two simple characteristics: their mass and their spin. While astronomers have long been able to measure black hole masses very effectively, determining their spins has been much more difficult. A new result from researchers using data from NASA's Chandra X-ray Observatory and ESA's XMM-Newton takes a step in addressing the spin question. By a lucky alignment, the light from a quasar some 6 billion light years has been magnified and amplified due to an effect called gravitational lensing. This allowed researchers to get detailed information about the amount of X-rays seen at different energies. This, in turn, gave the researchers information about how fast the supermassive black hole at the center of the quasar is spinning. When combined with the spins from other black holes using more indirect methods, astronomers are beginning to better understand just how black holes grow over time across the Universe.
[Runtime: 01:30]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
6. Tour of Sagittarius A*
QuicktimeMPEG Audio Only One of the biggest mysteries in astrophysics today is figuring out where mysterious particles called neutrinos come from. Neutrinos are tiny particles that carry no charge and interact very weakly with electrons and protons. Unlike light or charged particles, neutrinos can emerge from deep within their sources and travel across the universe without being absorbed by intervening matter or, in the case of charged particles, deflected by magnetic fields.

The Earth is constantly bombarded with neutrinos from the sun. However, neutrinos from beyond the solar system can be millions or billions of times more energetic. Scientists have long been searching for the origin of these very energetic neutrinos.

Now scientists have a new clue in their hunt for the source of neutrinos. By analyzing data from three X-ray telescopes, including Chandra, researchers have found a connection between flares generated by the supermassive black hole at the center of the Milky Way and the arrival of high-energy neutrinos at a detector under the South Pole. In fact, the facility in Antarctica, called the IceCube Neutrino Observatory, saw one of these high-energy neutrinos less than three hours after Chandra detected the largest flare ever from the Milky Way's supermassive black hole. The Swift and NuSTAR X-ray telescopes also recorded flares that were later tied to IceCube neutrino detections.

While it's too early to say if the Milky Way's black hole is definitively generating high-energy neutrinos, the latest results are a promising lead for scientists to follow.
[Runtime: 01:52]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
7. Growth of the Coma Colossus
QuicktimeMPEG Audio Only This picture shows the very large, very distant and very gassy Coma Cluster. It's a giant cluster of over 1000 galaxies that are all bound together by gravity. If you take a close look, you can make out the yellow-white shapes of galaxies scattered across the picture. The pink blobs show arms of multi-million degree gas, hot enough to cook your lungs in half a breath.

All big clusters of galaxies contain this very hot gas. The gas sends out lots of powerful X-rays because it's so hot, and these are what we can see in pink here. You can't see X-rays with your eyes, so astronomers have coloured them in pink. This gas is actually a very helpful tool for us, because the amount of material in the cluster can be measured using just the temperature of the gas! The hotter the gas, the more material there is!

Our Galaxy is also part of a group of galaxies, called the Local Group. Our cluster is also filled with gas, but it's so spread out that we don't see it when we look into the night sky. And because the Local Group is much smaller than the Coma Cluster, the gas around our galaxy isn't nearly as hot.

The gas in this picture also tells another story. The shape of these pink clouds and how they are spread throughout the cluster give us clues into how the Coma Cluster has grown. They show us that smaller groups of galaxies and smaller galaxy clusters have crashed and combined over time. The final result is the colossal Coma Cluster we see today, one of the biggest structures in the entire Universe!
[Runtime: 02:07]
(NASA/CXC/April Jubett)

Related Chandra Images:

Click for high-resolution animation
8. Tour of HD 189733
QuicktimeMPEG Audio Only HD 189733b: An exoplanet in orbit around a star about 63 light years from Earth.It has been nearly two decades since the first exoplanets - that is, planets around stars other than our Sun - were discovered. Now for the first time, X-ray observations have detected an exoplanet passing in front of its parent star. The observations, made by NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton Observatory, took advantage of the alignment of a planet and its parent star in HD 189733. This alignment enabled the observatories to observe a dip in X-ray intensity as the planet moved in front of, or transited, the star. This technique is the one used so successfully at optical wavelengths by NASA's Kepler telescope. In earlier studies using optical light, astronomers discovered that the main star in the HD 189733 system had what is known as a "hot Jupiter" around it. This means the planet is about the size of Jupiter, but in very close orbit around its star. The planet - that has been named HD 189733b -- is over 30 times closer to its star than Earth is to the Sun, and goes around the star once every 2.2 days. The new X-ray data suggest that this planet has a larger atmosphere than previously thought. This, in turn, may imply that radiation from the parent star is evaporating the atmosphere of HD 189733b more quickly than expected. The results on HD 189733 demonstrate how we need information from many different telescopes that detect different types of light to get a fuller picture of these mysterious worlds that we are now able to explore.
[Runtime: 01:54]
(NASA/CXC/J. DePasquale)

Related Chandra Images:

Click for high-resolution animation
9. Tour of 47 Tucanae
QuicktimeMPEG Audio Only Neutron stars are the ultra-dense cores that are often left behind after massive stars run out of fuel and collapse. In fact, these compact objects, which are less than 10 miles in diameter, contain the densest matter known in the Universe outside of a black hole. New results from Chandra and other X-ray telescopes are giving scientists information about important properties of neutron stars. By studying eight neutron stars, a group of researchers have come up with the one of the most reliable determinations yet of the relation between the radius of a neutron star and its mass. They looked at the neutron stars in double, or binary, systems where they are in orbit with stars like our Sun. One of these systems is known as X7 and is found in the globular cluster 47 Tucanae. Because the mass and radius of a neutron star is directly related to interactions between the particles in the interior of the star, the latest results give scientists new information about the inner workings of neutron stars.
[Runtime: 01:12]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
10. Tour of 4C+29.30
QuicktimeMPEG Audio Only Astronomers think that just about every galaxy contains a giant, or supermassive, black hole at their center. Sometimes the intense gravity of these black holes can be tapped to produce intense power. That's what is happening in the galaxy known as 4C+29.30, which is found some 850 million light years from Earth. By looking at this galaxy with different telescopes, astronomers can get a more complete picture. Radio data show two jets of particles that are speeding at millions of miles per hour away from the supermassive black hole. X-rays from Chandra trace the location of hot gas in the galaxy. The bright X-rays in the center of the image mark a pool of million-degree gas around the black hole. Some of this material may eventually be consumed by the black hole, and the magnetized, whirlpool of gas near the black hole could, in turn, trigger more output to the radio jet. Most of the low-energy X-rays around the black hole are absorbed by dust and gas, which is probably in the shape of a giant doughnut around the black hole. This doughnut, or torus, blocks all the optical light produced near the black hole, so astronomers refer to this type of source as a hidden or buried black hole.
[Runtime: 01:36]
(NASA/CXC/J. DePasquale)

Related Chandra Images: