Images
X-ray Images
Chandra Mission
X-ray Astronomy
Chandra People
Podcasts
Chandra in HD
Standard Definition
The Invisible Sky
Two Inch Universe
By Date/Category
Other Features
Animations & Video
Special Features
Audio
Virtual Postcards
Resources
Q & A
Glossary
Acronym Guide
Further Reading
Desktop Images
iPhone Wallpapers
By Date/Category
Miscellaneous
Handouts
Image Handouts
Chandra Lithographs
Educational Activities
Printable Games
Chandra Fact Sheets
Presentations
Entire Collection
By Date
By Category
Presentations
Web Shortcuts
Chandra Blog
RSS Feed
Chandra Mobile
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Recent Podcast
Vela Pulsar in 60 Seconds
Vela Pulsar in 60 Seconds
Unlike with some Hollywood films, a sequel of a movie from NASA's Chandra X-ray Observatory is better than the first. (2013-01-07)
Problems Viewing?
Having trouble viewing a movie? Make sure you update your video plug-ins. Visit our download center for help.
Animations & Video: Featured Image Tours
Click for high-resolution animation
1. Tour of GB 1428+4217
QuicktimeMPEG Audio Only The most distant jet in X-ray light has been discovered using data from NASA's Chandra X-ray Observatory. This jet was found in the quasar known as GB 1428+4217, or GB 1428 for short. How does GB 1428 make its jet? When giant black holes pull in material at a very rapid rate, large amounts of energy are released. This results in the production of intense radiation and beams of high-energy particles that blast away from the black hole at nearly the speed of light. Astronomers call these beams of particles "jets". At a distance of 12.4 billion years from Earth, the jet in GB 1428 gives astronomers a glimpse into the explosive activity associated with the growth of giant black holes in the early Universe.
[Runtime: 1.01]
(NASA/CXC/A. Hobart)

Click for high-resolution animation
2. Tour of IGR J11014-6103
QuicktimeMPEG Has the speediest pulsar been found? That's the question that astronomers are asking after three different telescopes looked at the pulsar known as IGR J11014-6103. This pulsar was found racing away from a supernova remnant located about 30,000 light years from Earth. An image from the European Space Agency's XMM-Newton satellite shows a glowing debris field in X-rays. This is the remains of a massive star that exploded thousands of years before. Using NASA's Chandra X-ray Observatory, researchers were able to focus their attention on a small, comet-shaped X-ray source outside the boundary of this supernova remnant. It appears that this object, thought to be a rapidly spinning, incredibly dense star - which astronomers call a "pulsar" -- was ejected during the supernova explosion. Researchers calculate that this pulsar may be dashing away from the supernova at speeds of about 6 million miles per hour. If this result is confirmed, it would make this pulsar the fastest ever seen.
[Runtime: 01:08]
(NASA/CXC/A. Hobart)

Click for high-resolution animation
3. Tour of Kepler's Supernova Remnant
QuicktimeMPEG Audio Only This image of Kepler's supernova remnant shows the expanding ball of debris from a supernova explosion in our galaxy. The supernova itself was seen in 1604 by Johannes Kepler and others. The different colors in the Chandra X-ray data show different energies in the supernova remnant, and optical data from the Digitized Sky Survey shows stars in the field. The Kepler supernova was the thermonuclear explosion of a white dwarf. New analysis suggests that the supernova explosion was not only more powerful, but might have also occurred at a greater distance, than previously thought.
[Runtime: 00:43]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
4. Tour of M83
QuicktimeMPEG Audio Only Since the 1980s, astronomers have known about a mysterious class of objects that they call "ultraluminous X-ray sources," or ULXs. They named them this because these objects give off more X-ray light than most other binary systems where black holes or neutron stars are in orbit around a normal companion star. Recently, scientists using NASA's Chandra X-ray Observatory and optical telescopes spotted a ULX in the spiral galaxy M83 that was acting even more strangely. This ULX increased its output in X-rays by 3,000 times over the course of several years. Using clues found in the X-ray and optical data, researchers think this ULX may be a member of a population of black holes that up until now was suspected to exist but had not been confirmed. These black holes, which are the smaller stellar-mass black holes, are older and more volatile than previously thought.
[Runtime: 1.04]
(NASA/CXC/A. Hobart)

Related Chandra Images:
  • Photo Album: M83

Click for high-resolution animation
5. Tour of NGC 1929
QuicktimeMPEG Audio Only The star cluster known as NGC 1929 is embedded in a cloud of gas and dust, which astronomers call the N44 nebula. Many new stars, some of them very massive, are forming within this star cluster. These massive stars produce intense radiation, expel matter at high speeds, and race through their evolution to explode as supernovas. The winds and supernova shock waves carve out huge cavities called superbubbles in the surrounding gas. X-rays from NASA's Chandra X-ray Observatory show hot regions created by these winds and shocks. Meanwhile, infrared data from NASA's Spitzer Space Telescope outline where the dust and cooler gas are found. An optical light image from a European Space Observatory telescope in Chile shows where ultraviolet radiation from hot, young stars is causing gas in the nebula to glow.
[Runtime: 1.04]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
6. Tour of NGC 4178
QuicktimeMPEG Audio Only A supermassive black hole with one of the lowest masses ever observed has been spotted in the middle of a galaxy, using NASA's Chandra X-ray Observatory and several other observatories. The black hole is located in the middle of the spiral galaxy NGC 4178, shown in this optical image. The inset shows an X-ray source at the position of the black hole, located at the center of a Chandra image. An analysis of the Chandra data, along with infrared data from the Spitzer Space Telescope and radio data from the Very Large Array suggests that the black hole has a mass less than about 200,000 times that of the sun. This is lower than the mass of most supermassive black holes. The host galaxy is of a type not expected to harbor supermassive black holes, suggesting that this black hole, while related to its supermassive cousins, may have a different origin.
[Runtime: 1.05]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
7. Tour of NGC 4342 & NGC 4291
QuicktimeMPEG Astronomers think that just about every galaxy has a giant black hole at its center. For quite some time, the prevailing wisdom has been that the mass of these supermassive black holes is tied to the size of the tightly packed group of stars around the galaxy's center known as its bulge. Two objects, however, have been discovered that are challenging this idea. NGC 4342 and NGC 4291 are relatively nearby galaxies, which means astronomers can get particularly good views of them. New data from NASA's Chandra X-ray Observatory revealed the presence of massive envelopes of dark matter around each galaxy. The researchers think the growth of the supermassive black holes may, in fact, be tied more closely to the amount and distribution of the dark matter in each galaxy, rather than the mass of stars contained in their bulges as previously believed.
[Runtime: 00.57]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
8. Tour of NGC 922
QuicktimeMPEG Audio Only In this holiday season of home cooking and carefully-honed recipes, some astronomers are asking: what is the best mix of ingredients for stars to make the largest number of plump black holes? They are tackling this problem by studying the number of black holes in galaxies with different compositions. One of these galaxies is the ring galaxy NGC 922 that was formed by the collision between two galaxies. This collision triggered the formation of new stars in the shape of a ring. Some of these were massive stars that evolved and collapsed to form black holes. Seven of the sources seen in the Chandra image are thought to contain stellar-mass black holes that are at least ten times more massive than the sun, which places them in the upper range for this class of black hole. By comparing NGC 922 to galaxies with different mixtures of elements, astronomers hope to master the ideal recipe for what it takes to make these large black holes.
[Runtime: 1.09]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
9. Tour of Phoenix Cluster
QuicktimeMPEG Astronomers have found an extraordinary galaxy cluster -- one of the largest objects in the Universe -- that is breaking several important cosmic records. This galaxy cluster has been dubbed the "Phoenix Cluster" because not only is it located in the constellation of the Phoenix, it also possesses some remarkable properties of the mythological creature. While galaxies at the center of most clusters may have been dormant for billions of years, the central galaxy in this cluster seems to have come back to life with a new burst of star formation. The stars are forming at the highest rate ever observed for the middle of a galaxy cluster. Observations with NASA's Chandra X-ray Observatory, the NSF's South Pole Telescope and eight other world-class observatories were used to study this object. Taken together, the data from these telescopes also show the Phoenix Cluster is the most powerful producer of X-rays and among the most massive of galaxy clusters. It also has the highest rate of hot gas cooling in the central regions of a cluster ever observed. The new results from the Phoenix Cluster, which is located about 5.7 billion light years from Earth, may force astronomers to rethink how galaxy clusters, and the galaxies that inhabit them, evolve.
[Runtime: 01:21]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
10. Tour of Sagittarius A*
QuicktimeMPEG Audio Only Over several years, astronomers have noticed flares in X-ray light from the black hole at the center of the Milky Way. NASA's Chandra X-ray Observatory detected these flares during the telescope's periodic observations of the black hole. A new study suggests that these flares may occur when the black hole - known as Sagittarrius A* or Sgr A* for short -- consumes an asteroid at least six miles wide. If an asteroid gets too close to another object like a star or planet, it can be thrown into an orbit headed toward Sgr A*. Once the asteroid passes within about 100 million miles of the black hole, it is torn into pieces by the black hole's tidal forces. Eventually, these fragments are vaporized by friction as they pass through the hot, thin gas flowing onto Sgr A*. This is what produces an X-ray flare. If confirmed, this result could mean that there is a cloud around Sgr A* containing trillions of asteroids and comets. This would be an exciting development for the many scientists who are fascinated by the Milky Way's giant black hole and the environment around it.
[Runtime: 01:17]
(NASA/CXC/A. Hobart)

Related Chandra Images: