A Star Explodes and Turns Inside Out

Cassiopeia A

A new X-ray study of the remains of an exploded star indicates that the supernova that disrupted the massive star may have turned it inside out in the process. Using very long observations of Cassiopeia A (or Cas A), a team of scientists has mapped the distribution of elements in the supernova remnant in unprecedented detail. This information shows where the different layers of the pre-supernova star are located three hundred years after the explosion, and provides insight into the nature of the supernova.

Women in the High-Energy Universe: April Jubett

April Jubett creates animations and videos to help explain Chandra’s discoveries in a visual way. Her work shows up most frequently as podcasts and short animations on the Chandra website.

Black Hole

I have always been interested in art and science, and the many connections between them. It started unconsciously, with a curiosity about the natural world around me and a fondness for drawing and trying to capture that world while learning more about it. When I found out that there are whole careers built on exploring the beauty and mystery of the universe, I thought, "Yeah, I can do that".

Close Planetary Pair and Chandra

All this week, Venus and Jupiter have appeared very close to each other in the night sky. Most people in the Northern Hemisphere have been able to spot the planetary duo in the western skies about four hours after sunset.

Trees

Jupiter, Moon and Venus Behind the Trees. Image Credit: Marco T.

This close pairing is a nice treat for skywatchers on Earth, but it really is an optical illusion of sorts. The planets are, of course, nowhere near each other. Venus is about 75 million miles away in one direction and Jupiter is over 500 million miles away in the other. Venus and Jupiter simply appear to come close to another from our vantage point on Earth as they travel in their usual orbits around the Sun.

Getting a Full Picture of an Elusive Subject

Abell 383

Two teams of astronomers have used data from NASA's Chandra X-ray Observatory and other telescopes to map the distribution of dark matter in a galaxy cluster known as Abell 383, which is located about 2.3 billion light years from Earth. Not only were the researchers able to find where the dark matter lies in the two dimensions across the sky, they were also able to determine how the dark matter is distributed along the line of sight.

Disruption of Asteroids by Supermassive Black Holes

Today we have a guest blogger, Uroš Kostić, who is currently a researcher at the Faculty of Mathematics and Physics at the University of Ljubljana in Slovenia. Here, he describes theoretical work on the destruction of asteroids by supermassive black holes, involving a collaboration between University of Ljubljana, Slovenia, and Astronomical Observatory in Padova, Italy, from 2005 - 2008. During the project, Uroš was preparing his PhD at University of Ljubljana under the supervision of Professor Andrej Čadež.

These results by Uroš were referenced by Kastytis Zubovas in the paper that we publicized last month (http://chandra.si.edu/photo/2012/sgra/). We were unable to mention the work by Uroš and his team in the release, but we felt that the originality of their work, published before the Zubovas et al. study, warranted a blog posting. Academic research invariably builds on the work done by others and to paraphrase Isaac Newton: "If I have seen further it is by standing on the shoulders of giants."

Chandra and the Latest Giant Solar Flare

On Friday March 2, 2012, we noticed Sunspot Group 1429 moving onto the Earth facing part of the Sun. The NOAA space weather service informed us that the magnetic topology was complex and this was a cell to watch out for. Sure enough, on Sunday night (March 4, Eastern time) the Sun emitted a short X1 flare. We all felt a bit better, because this often will relax the magnetic field. And since it was well off on the Eastern limb of the Sun, any coronal mass ejection (CME) should have missed us.

Sun

The Unexpected: The Solar System

Looking back on the more than twelve years of science from NASA’s Chandra X-ray Observatory and trying to predict what it will find in the future, one thing is certain: we can expect the unexpected.

This blog series will look at both some of the anticipated findings from the past dozen or so years, plus some of the unexpected results so far from the Chandra mission. Today, we look at discoveries involving our Solar System.

Expected and Detected:
X-ray emission was detected from the atmospheres of planets and comets. The X-rays are produced when solar X-rays and high-speed particles flowing away from the Sun hit these atmospheres. The observed X-radiation provides information on the outer atmospheres of these objects that is difficult to obtain with other telescopes.

Comet C/1999 S4

AAAS Meeting in Vancouver

AAAS

While we usually talk about meetings where astronomers get together, there are also other meetings where all types of scientists meet and exchange ideas. The AAAS meeting is one of them. "AAAS" stands for the American Association for the Advancement of Science, and it is the world's largest general scientific society.

Pages

Disclaimer: This service is provided as a free forum for registered users. Users' comments do not reflect the views of the Chandra X-ray Center and the Harvard-Smithsonian Center for Astrophysics.
Please note this is a moderated blog. No pornography, spam, profanity or discriminatory remarks are allowed. No personal attacks are allowed. Users should stay on topic to keep it relevant for the readers.
Read the privacy statement