NASA's Chandra Finds Massive Black Holes Common in Early Universe

Correction: After this paper (Treister et al. 2011) was published and publicized a problem was discovered with the background subtraction used. Analysis by several groups, including the Treister et al. team, plus Willott (2011) and Cowie et al. (2012), shows that a significant detection of AGN (growing black holes) in the early universe can no longer be claimed.

Editor's Note: Honest errors such as this are part of the scientific process, especially on the frontiers of discovery. To quote Nobel laureate Frank Wilczek, "If you don't make mistakes, you're not working on hard enough problems. And that's a big mistake."

References:

Cowie, L. et al. 2012, ApJ, in press
http://lanl.arxiv.org/abs/1110.3326

Treister, E. et al. 2011, Nature, 474, 356
http://lanl.arxiv.org/abs/1106.3079

Willott, C. 2011, ApJ, 742, L8
http://lanl.arxiv.org/abs/1110.4118

Chandra Deep Field South
This composite image from NASA's Chandra X-ray Observatory and Hubble Space Telescope (HST) combines the deepest X-ray, optical and infrared views of the sky. Using these images, astronomers have obtained the first direct evidence that black holes are common in the early Universe and shown that very young black holes grew more aggressively than previously thought.

Galaxies Coming of Age in Cosmic Blobs

A deep study of 29 gigantic blobs of hydrogen gas has been carried out with NASA's Chandra X-ray Observatory to identify the source of immense energy required to illuminate these structures. These mysterious blobs - called "Lyman-alpha blobs" by astronomers because of the light they emit - are several hundred thousand light years across and are seen when the Universe is only about two billion years old, or about 15% of its current age.
Chandra Images


Going Deep with Chandra

One of the most impressive accomplishments of the Chandra mission has been the improved understanding of the distant X-ray Universe. Chandra has accomplished this through deep X-ray surveys that generally involve pointing Chandra at a particular region of the sky that is not known to have any bright nearby objects and letting the camera collect X-ray light for an extended period of time.


Disclaimer: This service is provided as a free forum for registered users. Users' comments do not reflect the views of the Chandra X-ray Center and the Harvard-Smithsonian Center for Astrophysics.
Please note this is a moderated blog. No pornography, spam, profanity or discriminatory remarks are allowed. No personal attacks are allowed. Users should stay on topic to keep it relevant for the readers.
Read the privacy statement