Images
X-ray Images
Chandra Mission
X-ray Astronomy
Chandra People
Podcasts
Chandra in HD
Standard Definition
The Invisible Sky
Two Inch Universe
By Date/Category
Other Features
Animations & Video
Special Features
Audio
Inspirations
3D Files and Resources
Resources
Q & A
Glossary
Acronym Guide
Further Reading
Desktop Images
iPhone Wallpapers
By Date/Category
Miscellaneous
Handouts
Image Handouts
Chandra Lithographs
Chandra Infographics
Educational Activities
Printable Games
Chandra Fact Sheets
Presentations
Entire Collection
By Date
By Category
Presentations
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Problems Viewing?
Having trouble viewing a movie? Make sure you update your video plug-ins. Visit our download center for help.
More Information
Neutron Stars/X-ray Binaries
X-ray Astronomy Field Guide
Neutron Stars/X-ray Binaries
Questions and Answers
Neutron Stars/X-ray Binaries
Chandra Images
Neutron Stars/X-ray Binaries
Animations & Video: Neutron Stars/X-ray Binaries
Page 123456
Click for high-resolution animation
1. Tour of Cyg X-3's Little Friend
QuicktimeMPEG The story of how stars are born and eventually die can be a complicated one. After all, the life and death of stars is determined by many factors including its mass and environment. Take, for example, Cygnus X-3. For decades, astronomers have studied this object and determined that it is a so-called X-ray binary. This means that it is, in fact, a pair of objects. One of the objects is a compact source - either a neutron star or black hole that was produced by the death of a massive star - that is pulling material away from the other object, a living companion star.

In 2003, astronomers noticed something else when observing Cygnus X-3 with Chandra. They saw another source very close to Cygnus X-3 on the sky. Thanks to Chandra's unparalleled X-ray vision, they were able to resolve this source even though it was a mere 16 arcseconds away on the sky. To put it another way, the separation of Cygnus X-3 and this new source is equivalent to the width of a penny about 800 feet away. Astronomers nicknamed this new object the "Little Friend."

Recently, a team of astronomers has combined Chandra data with radio data from the Submillimeter Array to learn more about both Cygnus X-3 and the Little Friend. They determined that the Little Friend is a Bok globule, which is a small, dense, very cold cloud. The radio data shows that the Little Friend is producing jets, indicating that a new star is forming inside. This unusual configuration of an X-ray binary so close to a Bok globule provides astronomers with a new way of studying how stars - or at least some of them - form.
[Runtime: 02:54]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
2. Tour of RCW 103
QuicktimeMPEG When stars have more than about 8 times as much mass as the Sun, they end their lives in a spectacular explosion called a supernova. The outer layers of the star are hurtled out into space at millions of miles per hour, leaving a debris field of gas and dust. Where the star once was located, a small, incredibly dense object called a neutron star is often found. While only 10 miles or so across, the tightly packed neutrons in such a star contain more mass than the entire Sun.

The supernova remnant called RCW 103 is a by-product of one of these explosions and the neutron star it left behind, known as 1E 1613, is proving to be particularly interesting. For years, astronomers have known that 1E 1613 shows a regular brightening and dimming in its X-rays that repeats about every six and a half hours. It could be a neutron star that is rotating much more slowly than other neutron stars, or it could be a faster-spinning neutron star that has a normal star as a companion.

New data from four high-energy telescopes, Chandra, Swift, NuSTAR and XMM-Newton, have shown that the unusually slow spin is the correct explanation and that.1E 1613 has the properties of a magnetar. Magnetars are neutron stars that possess enormously powerful magnetic fields, trillions of times greater than that on the Sun.

While it is still unclear why 1E 1613 is spinning so slowly, scientists do have some ideas. One leading scenario is that debris from the exploded star has fallen back onto magnetic field lines around the spinning neutron star, causing it to spin more slowly with time. Searches are currently being made for other very slowly spinning magnetars to study this idea in more detail.
[Runtime: 03:06]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
3. Tour of G11.2-0.3
QuicktimeMPEG While they may sound like very different and distinct fields, astronomy and history can intersect in very interesting and important ways. Take, for example, historical supernovas and their remnants. These are objects that astronomers observe today and that can also be linked to recordings in previous centuries or even millennia. Being able to tie a credible historical event with a supernova remnant observed today provides crucial information about these explosive stellar events.

Until now, the supernova remnant G11.2-0.3 was considered one of these historical supernova remnants. Previous studies have suggested that G11.2-0.3 was created in a supernova that was witnessed by Chinese astronomers in 386 CE. New Chandra data, however, of this circle shaped debris field, indicate that is not the case. The latest information from Chandra reveals that there are dense clouds of gas that lie between Earth and the supernova remnant. Therefore, it is not possible that much optical light from the supernova - the kind of light humans can see - would have penetrated the clouds and been visible with the naked eye at Earth. While it may no longer be a historical supernova remnant, G11.2-0.3 remains an intriguing and beautiful object that astronomers will continue to study.
[Runtime: 02:19]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
4. Tour of VLA J2130+12
QuicktimeMPEG As their reputation -- and very name - suggest, black holes are black. That is, once light passes a certain threshold of a black hole, called the event horizon, it never returns. This should make them virtually impossible to find. However, astronomers have found many black holes both here in our Milky Way galaxy and beyond. How is that possible? The answer is that regions immediately surrounding the black hole are often very bright in different types of light, including X-rays. That's because the black hole's immense gravitational pull can pull material away from a companion star at a high rate. This can create a swirling disk of heated material, generate enormous jets that reach across vast distances of space, or produce other telltale signs that we can observe with modern telescopes.

But what if a black hole is just sitting in space quietly, pulling in material at an unusually slow rate? It turns out that this might be more common than astronomers thought. A new result shows that a source within our Galaxy is actually a very quiet black hole - one that was never identified before as a black hole until now. It took data from many telescopes including Chandra, Hubble and several radio observatories to piece together all of the necessary information.

A team of researchers is now very confident that this source - known as VLA J2130+12 for short - contains a black hole a few times the mass of the Sun. This result suggests that the Milky Way galaxy could have thousands or even millions of these silent black holes. To find out if this is the case, astronomers will be looking to find them.
[Runtime: 03:00]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
5. A Tour of IC 443
QuicktimeMPEG The supernova remnant IC 443 has earned the nickname of the Jellyfish Nebula due to its distinctive shape. The Jellyfish Nebula, lying about 5,000 light years from Earth, is the remnant of a supernova that occurred over 10,000 years ago. Astronomers have been searching for the spinning neutron star, or pulsar, that may have formed in the explosion that created the Jellyfish Nebula. New Chandra observations show that a peculiar object, called J0617, may indeed be this pulsar.

When a massive star runs out of fuel, it implodes, and a dense stellar core, called a neutron star, is formed. The outer layers of the star collapse toward the neutron star then bounce outward in a supernova explosion. If the neutron star produces a beam of radiation and is rotating, it is called a pulsar, because pulses of radio waves and other types of radiation can be detected as the object spins.

The X-ray brightness of J0617 and its X-ray spectrum, that is, the amount of X-rays at different wavelengths, are consistent with the profiles from known pulsars. The spectrum and shape of the diffuse, or spread out, X-ray emission surrounding J0617 and extending well beyond the ring also match with expectations for a wind flowing from a pulsar.

While certain questions remain about this system, this latest research provides promise that astronomers may finally determine exactly what spawned the Jellyfish Nebula.
[Runtime: 02:52]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
6. Banking X-ray Data for the Future
QuicktimeMPEG Archives, in their many forms, save information from today that people will want to access and study in the future. This is a critical function of all archives, but it is especially important when it comes to storing data from today's modern telescopes.

NASA's Chandra X-ray Observatory has collected data for over sixteen years on thousands of different objects throughout the Universe. The science team has immediate access to the data, and then a year after observation all of the data goes into a public archive where it can be folded into later studies.

To celebrate October being American Archive Month a collection of images from the Chandra archive is being released. Some of these objects may be familiar to readers, while others may be unknown. None of these images, in the exact form, has been released before.

By combining data from different observation dates, new perspectives of cosmic objects can be created. With archives like those from Chandra and other major observatories, such vistas will be available for future exploration.
[Runtime: 01:27]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
7. Tour of PSR B1259-63/LS 2883
QuicktimeMPEG In astronomy, it is often difficult to figure out exactly far away objects are. For objects in our Solar System and nearby stars, astronomers can use reliable methods involving geometry. However, these techniques cannot be applied to objects beyond our immediate cosmic neighborhood. There are some rare circumstances where relatively simple geometric techniques can be used to determine distances to more far-flung objects.

This is the case of Circinus X-1, a system in which a neutron star is in orbit around a massive star. In 2013, astronomers watched as Circinus X-1 erupted in a giant burst of X-rays. Afterwards, they used NASA's Chandra X-ray Observatory and ESA's XMM-Newton to observe what happened next. The scientists now report that they see a set of four rings that appear as circles around Circinus X-1. What are these are these rings and what do they do? These rings are light echoes, similar to sound echoes that we may experience here on Earth. Instead of sound waves bouncing off a canyon wall, the echoes around Circinus X-1 are produced when a burst of X-rays from the star system ricochets off of clouds of dust between Circinus X-1 and Earth.

By combining the light echoes that Chandra detects with radio data from the Mopra telescope in Australia, which determined the distance to the intervening clouds, astronomers can estimate the distance to Circinus X-1 using relatively simple geometry. The light echo method generates a distance of 30,700 light years. The observation thus settles a large difference amongst previous results, one similar to this work and one indicating a much smaller distance of about 13,000 light years.
[Runtime: 02:06]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
8. A Tour of Circinus X-1
QuicktimeMPEG In astronomy, it is often difficult to figure out exactly far away objects are. For objects in our Solar System and nearby stars, astronomers can use reliable methods involving geometry. However, these techniques cannot be applied to objects beyond our immediate cosmic neighborhood. There are some rare circumstances where relatively simple geometric techniques can be used to determine distances to more far-flung objects.

This is the case of Circinus X-1, a system in which a neutron star is in orbit around a massive star. In 2013, astronomers watched as Circinus X-1 erupted in a giant burst of X-rays. Afterwards, they used NASA's Chandra X-ray Observatory and ESA's XMM-Newton to observe what happened next. The scientists now report that they see a set of four rings that appear as circles around Circinus X-1. What are these are these rings and what do they do? These rings are light echoes, similar to sound echoes that we may experience here on Earth. Instead of sound waves bouncing off a canyon wall, the echoes around Circinus X-1 are produced when a burst of X-rays from the star system ricochets off of clouds of dust between Circinus X-1 and Earth.

By combining the light echoes that Chandra detects with radio data from the Mopra telescope in Australia, which determined the distance to the intervening clouds, astronomers can estimate the distance to Circinus X-1 using relatively simple geometry. The light echo method generates a distance of 30,700 light years. The observation thus settles a large difference amongst previous results, one similar to this work and one indicating a much smaller distance of about 13,000 light years.
[Runtime: 02:06]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
9. Chandra's Archives Come to Life
QuicktimeMPEG Every year, NASA's Chandra X-ray Observatory looks at hundreds of objects throughout space to help expand our understanding of the Universe. Ultimately, these data are stored in the Chandra Data Archive, an electronic repository that provides access to these unique X-ray findings for anyone who would like to explore them. With the passing of Chandra's 15th anniversary, in operation since August 26, 1999, the archive continues to grow as each successive year adds to the enormous and invaluable dataset.

To celebrate Chandra's decade and a half in space, and to honor October as American Archive Month, a variety of objects have been selected from Chandra's archive. Each of the new images we have produced combines Chandra data with those from other telescopes. This technique of creating "multiwavelength" images allows scientists and the public to see how X-rays fit with data of other types of light, such as optical, radio, and infrared. As scientists continue to make new discoveries with the telescope, the burgeoning archive will allow us to see the high-energy Universe as only Chandra can.
[Runtime: 01:27]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
10. Supernova Blast Provides Clues to Age of Binary Star System
QuicktimeMPEG If you've ever broken a bone, you'll know that X-rays are bad for humans. When doctors make an X-ray picture of a broken bone, they leave the room to avoid being hit by X-ray radiation every time. But the radiation you receive from an X-ray of your arm is 50 times less than the radiation we are blasted with every year from cosmic sources. Fortunately, our atmosphere blocks these X-rays so we're perfectly safe here on Earth.

Some of the most powerful sources of X-rays in the Universe are "X-ray binaries". These are made up of a normal star, like the Sun, and an ultra-compact type star called a "neutron star" or a black hole. As these two objects orbit one another, the neutron star's strong gravity pulls material off the companion star and onto it.

A new study of an X-ray binary called Circinus X-1 found that it is less than 4,600 years old! This makes it the youngest X-ray binary ever seen. Astronomers have detected hundreds of X-ray binaries throughout our Galaxy and others. But these older X-ray binaries only reveal information about what happens much later in the life of these systems. The new observations tell us new information about the stage just after the system forms.
[Runtime: 01:50]
(NASA/CXC/April Jubett)

Related Chandra Images:

Page 123456