Images by Date
Images by Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
4K JPG
Multiwavelength
Sky Map
Constellations
3D Wall
Photo Blog
Top Rated Images
Image Handouts
Desktops
High Res Prints
Fits Files
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Getting Hard Copies
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
NASA Missions Catch First Light from a Gravitational-Wave Event

  • Astronomers have used Chandra to make the first X-ray detection of a gravitational wave source.

  • This is the first evidence that the aftermath of gravitational wave events can also emit X-rays.

  • The data indicate this event was the merger of two neutron stars that produced a jet pointing away from Earth.

  • Chandra provides the missing observational link between short gamma-ray bursts (GRBs) and gravitational waves from neutron star mergers.

Astronomers have used NASA's Chandra X-ray Observatory to make the first X-ray detection of a gravitational wave source. Chandra was one of multiple observatories to detect the aftermath of this gravitational wave event, the first to produce an electromagnetic signal of any type. This discovery represents the beginning of a new era in astrophysics.

The gravitational wave source, GW170817, was detected with the advanced Laser Interferometer Gravitational-Wave Observatory, or LIGO, at 8:41am EDT on Thursday August 17, 2017. Two seconds later NASA's Fermi Gamma-ray Burst Monitor (GBM) detected a weak pulse of gamma-rays. Later that morning, LIGO scientists announced that GW170817 had the characteristics of a merger of two neutron stars.

During the evening of August 17, multiple teams of astronomers using ground-based telescopes reported a detection of a new source of optical and infrared light in the galaxy NGC 4993, a galaxy located about 130 million light years from Earth. The position of the new optical and infrared source agreed with the position of the Fermi and the gravitational wave sources. The latter was refined by combining information from LIGO and its European counterpart, Virgo.

Over the following two weeks, Chandra observed NGC 4993 and the source GW170817 four separate times. In the first observation on August 19th (Principal Investigator: Wen-fai Fong from Northwestern University in Evanston, Illinois), no X-rays were detected at the location of GW170817. This observation was obtained remarkably quickly, only 2.3 days after the gravitational source was detected.

On August 26, Chandra observed GW170817 again and this time, X-rays were seen for the first time (PI: Eleonora Troja from Goddard Space Flight Center in Greenbelt, MD, and the University of Maryland, College Park). This new X-ray source was located at the exact position of the optical and infrared source.

"This Chandra detection is very important because it is the first evidence that sources of gravitational waves are also sources of X-ray emission," said Troja. "This detection is teaching us a great deal of information about the collision and its remnant. It helps to give us an important confirmation that gamma-ray bursts are beamed into narrow jets."

The accompanying graphic shows both the Chandra non-detection, or upper limit of X-rays from GW170817 on August 19th, and the subsequent detection on August 26th, in the two sides of the inset box. The main panel of the graphic is the Hubble Space Telescope image of NGC 4993, which includes data taken on August 22nd. The variable optical source corresponding to GW170817 is located in the center of the circle in the Hubble image.

Chandra observed GW170817 again on September 1st (PI Eleonora Troja) and September 2nd (PI: Daryl Haggard from McGill University in Montreal, Canada), when the source appeared to have roughly the same level of X-ray brightness as the August 26 observation.

The properties of the source's X-ray brightness with time matches that predicted by theoretical models of a short gamma-ray burst (GRB). During such an event, a burst of X-rays and gamma rays is generated by a narrow jet, or beam, of high-energy particles produced by the merger of two neutron stars. The initial non-detection by Chandra followed by the detections show that the X-ray emission from GW170817 is consistent with the afterglow from a GRB viewed "off-axis," that is, with the jet not pointing directly towards the Earth. This is the first time astronomers have ever detected an off-axis short GRB.

"After some thought, we realized that the initial non-detection by Chandra perfectly matches with what we expect," said Fong. "The fact that we did not see anything at first gives us a very good handle on the orientation and geometry of the system."

Illustration Credit: NASA/CXC/K.DiVona

The researchers think that initially the jet was narrow, with Chandra viewing it from the side. However, as time passed the material in the jet slowed down and widened as it slammed into surrounding material, causing the X-ray emission to rise as the jet came into direct view. The Chandra data allow researchers to estimate the angle between the jet and our line of sight. The three different Chandra observing teams each estimate angles between 20 and 60 degrees. Future observations may help refine these estimates.

The detection of this off-axis short GRB helps explain the weakness of the gamma-ray signal detected with Fermi GBM for a burst that is so close by. Because our telescopes are not looking straight down the barrel of the jet as they have for other short GRBs, the gamma-ray signal is much fainter.

The optical and infrared light is likely caused by the radioactive glow when heavy elements such as gold and platinum are produced in the material ejected by the neutron star merger. This glow had been predicted to occur after neutron stars merged.

By detecting an off-axis short GRB at the location of the radioactive glow, the Chandra observations provide the missing observational link between short GRBs and gravitational waves from neutron star mergers.

This is the first time astronomers have all of the necessary pieces of information of neutron stars merging — from the production of gravitational waves followed by signals in gamma rays, X-rays, optical and infrared light, that all agree with predictions for a short GRB viewed off-axis.

"This is a big deal because it's an entirely new level of knowledge," said Haggard. "This discovery allows us to link this gravitational wave source up to all the rest of astrophysics, stars, galaxies, explosions, growing massive black holes, and of course neutron star mergers."

Papers describing these results have been accepted for publication in Nature (Troja et al.), and The Astrophysical Journal Letters (Haggard et al. and Margutti et al.). Raffaella Margutti is a collaborator of Fong's, also from Northwestern.

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

 

Fast Facts for GW170817:
Credit  X-ray: NASA/CXC/Northwestern U./W. Fong & R. Margutti et al. & NASA/GSFC/E. Troja et al.; Optical:NASA/STScI
Release Date  October 16, 2017
Scale  Full field optical is about 0.9 arcmin across (about 367,000 light years); X-ray inset is about 0.1 arcmin across (about 41,000 light years)
Category  Neutron Stars/X-ray Binaries
Coordinates (J2000)  RA 13h 09m 48.1s | Dec -23° 22´ 53.4"
Constellation  Hydra
Observation Date  August 19, 2017, August 26, 2017, September 1, 2017, September 2, 2017 2017
Observation Time  46 hours 23 minutes
Obs. ID  18955, 19294, 20728, 18988
Instrument  ACIS
References Margutti et al.: The Astrophysical Journal Letters, 848:L20 (7pp), 2017 October 20
Haggard et al.: The Astrophysical Journal Letters, 848:L25 (6pp), 2017 October 20
Troja et al.: Nature (2017) Published online 16 October 2017
Color Code  X-rays (Purple); Optical (Red, Green, Blue)
Optical
X-ray
Distance Estimate  About 130 million light years
distance arrow
Visitor Comments (6)

Reply to Dudley Booth
At the moment, it is unclear as to whether the merger has produced a black hole or something else. Future observations will continue to help us understand what has happened here.

Posted by Nancy Wolk on Friday, 10.20.17 @ 13:06pm


Amazing. Glad I am on your list. Thank, you very much.

Posted by John Lisa on Thursday, 10.19.17 @ 10:48am


Would not the merger of two neutron stars result in the formation of a single black hole?

Posted by Dudley booth on Tuesday, 10.17.17 @ 11:18am


I'm glad this is all coming together.
So interesting.

Posted by Sammy Sosa on Monday, 10.16.17 @ 20:25pm


Congratulations on your observations and early conclusions. I am assuming Swift finds this kind of "burst" below the trigger to swing it to observe an object this far off axis so that it's intensity is below what Swift can detect.
Kudos

Posted by Les Porter on Monday, 10.16.17 @ 14:24pm


Yes, the fusion of two neutron stars producing waves of aberration called gravity waves rather than the fusion of two esoteric holes as a result of this wave.

Posted by Zezo on Monday, 10.16.17 @ 12:11pm


Leave Your Comment


 
 

Rules

Rate This Image

Rating: 4.0/5
(82 votes cast)
Download & Share

More Information
More Images
X-ray Image of GW170817
on August 26, 2017
Jpg, Tif
X-ray

More Images
Animation & Video
Tour of GW170817
animation

More Animations
Related Images
GRB 140903A
GRB 140903A
(14 Jul 16)

GRB 050709
GRB 050709
(5 Oct 05)


Related Information
Related Podcast
Top Rated Images
Jupiter

MACS J1149.5+2233

Perseus Cluster




FaceBookTwitterYouTubeFlickr