Images by Date
Images by Category
Solar System
White Dwarfs
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Galaxy Clusters
Cosmology/Deep Field
Images by Interest
Space Scoop for Kids
Sky Map
3D Wall
Photo Blog
Top Rated Images
Image Handouts
High Res Prints
Fits Files
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
Getting Hard Copies
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
More Information
Neutron Stars/X-ray Binaries
X-ray Astronomy Field Guide
Neutron Stars/X-ray Binaries
Questions and Answers
Neutron Stars/X-ray Binaries
Chandra Images
Neutron Stars/X-ray Binaries
Related Podcasts
A Tour of Cyg X-3's Little Friend
Download Image

More Information
Handout: html | pdf

More Images
Chandra X-ray Image
of 47 Tuc W
(Credit: NASA/CXC/Northwestern U./C.Heinke et al.)

Animation & Video

Related Images
47 Tuc W:
What's Hot? Chandra Finds Long-Sought Link to Origin of Millisecond Pulsars

47 Tuc W
Credit: X-ray: NASA/CXC/CfA/J.Grindlay & C.Heinke; Optical: ESO/Danish 1.54-m/W.Keel et al.

The peculiar cosmic object known as 47 Tuc W (denoted by arrow in the X-ray image) is a double star system consisting of a normal star and a neutron star that makes a complete rotation every 2.35 milliseconds. Blink your eye and a superdense star the size of Manhattan Island will have rotated 25 or more times!

New Chandra observations give the best information yet on why such neutron stars, called millisecond pulsars, are rotating so fast. The key, as in real estate, is location, location, location - in this case the crowded confines of the globular star cluster 47 Tucanae, where stars are less than a tenth of a light year apart. Almost two dozen millisecond pulsars are located there. This large sample is a bonanza for astronomers seeking to test theories for the origin of millisecond pulsars, and increases the chances that they will find a critical transitional object such 47 Tuc W.

47 Tuc W stands out from the crowd because it produces more high-energy X-rays than the others. This anomaly points to a different origin of the X-rays, namely a shock wave due to a collision between matter flowing from a companion star and particles racing away from the pulsar at near the speed of light. Regular variations in the optical and X-ray light corresponding to the 3.2-hour orbital period of the stars support this interpretation.

A team of astronomers from the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA pointed out that the X-ray signature and variability of the light from 47 Tuc W are nearly identical to those observed from an X-ray binary source known as J1808. They suggest that these similarities between a known millisecond pulsar and a known X-ray binary provide the long-sought link between these types of objects.

In theory, the first step toward producing a millisecond pulsar is the formation of a neutron star when a massive star goes supernova. If the neutron star is in a globular cluster, it will perform an erratic dance around the center of the cluster, picking up a companion star which it may later swap for another.

As on a crowded dance floor, the congestion in a globular cluster can cause the neutron star to move closer to its companion, or to swap partners to form an even tighter pair. When the pairing becomes close enough, the neutron star begins to pull matter away from its partner. As matter falls onto the neutron star, it gives off X-rays. An X-ray binary system has been formed, and the neutron star has made the crucial second step toward becoming a millisecond pulsar.

The matter falling onto the neutron star slowly spins it up, in the same way that a child's carousel can be spun up by pushing it every time it comes around. After 10 to 100 million years of pushing, the neutron star is rotating once every few milliseconds. Finally, due to the rapid rotation of the neutron star, or the evolution of the companion, the infall of matter stops, the X-ray emission declines, and the neutron star emerges as a radio-emitting millisecond pulsar.

It is likely that the companion star in 47 Tuc W - a normal star with a mass greater than about an eighth that of the Sun - is a new partner, rather than the companion that spun up the pulsar. The new partner, acquired fairly recently in an exchange that ejected the previous companion, is trying to dump on the already spun-up pulsar, creating the observed shock wave. In contrast, the X-ray binary J1808 is not in a globular cluster, and is very likely making do with its original companion, which has been depleted to a brown dwarf size with a mass less than 5% that of the Sun.

Most astronomers accept the binary spin-up scenario for creating millisecond pulsars because they have observed neutron stars speeding up in X-ray binary systems, and almost all radio millisecond pulsars are observed to be in binary systems. Until now, definitive proof has been lacking, because very little is known about transitional objects between the second and final steps.

That is why 47 Tuc W is hot. It links a millisecond pulsar with many of the properties of an X-ray binary, to J1808, an X-ray binary that behaves in many ways like a millisecond pulsar, thus providing a strong chain of evidence to support the theory.

Fast Facts for 47 Tuc W:
Credit  X-ray: NASA/CXC/CfA/J.Grindlay & C.Heinke; Optical: ESO/Danish 1.54-m/W.Keel et al.
Scale  Left panel: Image is 6.6 arcmin per side; Right panel: Image is 2.5 arcmin per side .
Category  Neutron Stars/X-ray Binaries
Coordinates (J2000)  RA 00h 24m 42.0s | Dec -72° 00' 00"
Constellation  Tucana
Observation Dates  16-17 Mar 2000; 29 Sep-03 Oct 2002; 11 Oct 2002
Observation Time  47 hours
Obs. IDs  078, 953-56, 2735-38, 3384-87
Color Code  Energy: 0.3-1.2 keV red; 1.2-2 keV green; 2-6 keV blue
Instrument  ACIS
Also Known As PSR J0024-7204W
References 47tuc
Distance Estimate  About 16,000 light years
Release Date  July 19, 2005