Images by Date
Images by Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
4K JPG
Multiwavelength
Sky Map
Constellations
3D Wall
Photo Blog
Top Rated Images
Image Handouts
Desktops
High Res Prints
Fits Files
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Getting Hard Copies
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
M82X-2 Animations
Click for low-resolution animation
Tour of M82X-2
Quicktime MPEG With closed-captions (at YouTube)

Ultraluminous X-ray Sources, or ULXs, are unusual objects. They are rare and, as their name implies, give off enormous amounts of X-rays. Until now, astronomers thought that ULXs were powered by a system where a stellar mass black hole was in orbit around a neutron star or black hole. However, a study using data from NASA's NuSTAR and Chandra X-ray Observatory shows that this class of objects is more diverse than that. With NuSTAR, astronomers discovered regular variations, or pulsations, coming from a small region in the center of the galaxy M82, which is located about 11.4 million light years from Earth. The researchers then used Chandra, with its exceptionally keen vision in X-ray light, to pinpoint exactly which source was giving off these pulsations. This source is called M82X-2. It's hard to explain how a system with a black hole could generate the pulsations seen by NuSTAR. Because of this and other data, astronomers think that M82X-2 is the brightest pulsar ever seen. Pulsars are rapidly spinning neutron stars that sweep beams of radiation out like a lighthouse, and this is what would explain the pulsations of X-ray light seen in M82X-2. ULXs just became a little more unusual and intriguing to study.
[Runtime: 01:43]

(Credit: NASA/CXC/A. Hobart)




Return to M82X-2 (October 8, 2014)