By Definition
High Definition
Standard Definition
By Length
Full (4-12 min)
Short (1-4 min)
By Date
2014 | 2013 | 2012 | 2011 | 2010
2009 | 2008 | 2007 | 2006
By Category
Solar System
White Dwarfs
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Groups of Galaxies
Cosmology/Deep Field
Space Scoop for Kids!
How To
Apple iTunes
RSS Reader
Web Shortcuts
Chandra Blog
RSS Feed
Chandra Mobile
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Recent Podcast
A Tour of The Big, Bad & Beautiful Universe with Chandra
A Tour of The Big, Bad & Beautiful Universe with Chandra
To celebrate the 15th anniversary of NASA's Chandra X-ray Observatory, we have released four new images of supernova remnants. These show Chandra's ability to study the remains of supernova explosions, using images that are the sharpest available in X-ray astronomy. The images of the Tycho and G292.0+1.8 supernova remnants show how Chandra can trace the expanding debris of an exploded star. The images show shock waves, similar to sonic booms from a supersonic plane, that travel through space at speeds of millions of miles per hour. The images of the Crab Nebula and 3C58 show the effects of very dense, rapidly spinning neutron stars created when a massive star explodes. These neutron stars can create clouds of high-energy particles that glow brightly in X-rays. The image for G292 shows oxygen (yellow and orange), and other elements such as magnesium (green) and silicon and sulfur (blue) that were forged in the star before it exploded. For the other images, the lower energy X-rays are shown in red and green and the highest energy X-rays are shown in blue. (2014-07-22)

G1.9+0.3 in 60 Seconds

Narrator (Joseph DePasquale, CXC): Astronomers estimate that a star explodes as a supernova in our Galaxy, on average, about twice per century. In 2008, a team of scientists announced they discovered the remains of a supernova that is the most recent, in Earth’s time frame, known to have occurred in the Milky Way. The explosion would have been visible from Earth a little more than a hundred years ago, if it hadn't been heavily obscured by dust and gas. Today, that object is known as the supernova G1.9+0.3 or G1.9 for short. A new long observation -- equivalent to more than 11 days of Chandra time -- of explosion's debris field is providing new details about G1.9. The source of G1.9 was most likely a white dwarf star that underwent a thermonuclear detonation and was destroyed – either after merging with another white dwarf or by pulling too much material from an orbiting companion star. The explosion ejected the remains of the destroyed star, creating the supernova remnant seen today by Chandra and other telescopes. The new Chandra data show that the explosion that created G1.9 was different than other supernovas like it. For starters, the remnant's debris is unevenly distributed, while most other supernova remnant are highly symmetrical. Also, researchers found that some of the debris – particularly iron that would have been in the star's core before the explosion -- is moving at extremely high speeds. By combining these clues from the Chandra data with theoretical models, scientists think that the explosion that created G1.9 must have been highly irregular and abnormally energetic.

Return to Podcasts