By Definition
High Definition
Standard Definition
By Length
Full (4-12 min)
Short (1-4 min)
By Date
2015 | 2014 | 2013 | 2012 |
2011 | 2010 | 2009 | 2008 |
2007 | 2006
By Category
Solar System
White Dwarfs
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Groups of Galaxies
Cosmology/Deep Field
Space Scoop for Kids!
Chandra Sketches
How To
Apple iTunes
RSS Reader
Web Shortcuts
Chandra Blog
RSS Feed
Chandra Mobile
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Recent Podcast
Tour of Phoenix Cluster
Tour of Phoenix Cluster
This galaxy cluster, which was found about 5.7 billion light years from Earth, shattered several important astronomical records. (2015-10-01)

Kepler's Supernova Remnant in 60 Seconds

Narrator (April Hobart, CXC): Over 400 years ago, Johannes Kepler and many others witnessed the appearance of a new "star" in the sky. Today, this object is known as the Kepler supernova remnant. For some time, astronomers have thought that the Kepler remnant comes from a so-called Type Ia supernova. These supernovas are the result of a thermonuclear explosion of a white dwarf. However, there is an ongoing controversy about Type Ia supernovas. Are they caused by a white dwarf pulling so much material from a companion star that it becomes unstable and explodes? Or do they result from the merger of two white dwarfs? New Chandra images reveal a disk-shaped structure near the center of the remnant. Researchers interpret this X-ray emission to be caused by the collision between supernova debris and disk-shaped material that a giant star expelled before the explosion. This and other pieces of evidence suggest that at least the Type Ia explosion that created Kepler was not the result of a merger between white dwarfs. Since these supernovas are used to measure the expansion of the Universe itself, astronomers are eager to understand them inside and out.

Return to Podcasts