By Length
Full (4-12 min)
Short (1-4 min)
By Date
2024 | 2023 | 2022 | 2021
2020 | 2019 | 2018 | 2017
2016 | 2015 | 2014 | 2013
2012 | 2011 | 2010 | 2009
2008 | 2007 | 2006
By Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Groups of Galaxies
Cosmology/Deep Field
Miscellaneous
HTE
STOP
Space Scoop for Kids!
Chandra Sketches
Light
AstrOlympics
Quick Look
Visual Descriptions
Subscribe
How To
RSS Reader
Audio-only format podcast
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader


A Tour of SGR 1745-2900

View/Listen
Narrator (April Hobart, CXC): In 2013, astronomers announced they had discovered a magnetar exceptionally close to the supermassive black hole at the center of the Milky Way using a suite of space-borne telescopes including NASA's Chandra X-ray Observatory.

Magnetars are dense, collapsed stars -- called "neutron stars" -- that possess enormously powerful magnetic fields. This magnetar, which astronomers named SGR 1745-2900, could be as close as two trillion miles from the black hole at the center of the Milky Way. While this may sound like a large distance, it is not in astronomical terms. In fact, this magnetar is by far the closest neutron star to a supermassive black hole ever discovered and is likely in its gravitational grip.

Since its discovery two years ago when it gave off a burst of X-rays, astronomers have been actively monitoring SGR 1745-2900 with Chandra and the European Space Agency's XMM-Newton. A new study uses these observations to reveal that the X-ray output from SGR 1745-2900 is dropping more slowly than for other magnetars, and its surface is hotter than expected.

What is causing this unusual behavior? The researchers propose the surface of the magnetar is being bombarded by charged particles. These particles may be trapped in twisted bundles of magnetic fields. This scenario could explain both the slow decline in X-rays as well as the hotter-than-usual surface temperature of SGR 1745-2900. Scientists will continue to study SGR 1745-2900 to glean more clues about what is happening with this magnetar as it orbits our Galaxy's giant black hole.


Return to Podcasts