By Definition
High Definition
Standard Definition
By Length
Full (4-12 min)
Short (1-4 min)
By Date
2014 | 2013 | 2012 | 2011 | 2010
2009 | 2008 | 2007 | 2006
By Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Groups of Galaxies
Cosmology/Deep Field
Miscellaneous
HTE
STOP
Space Scoop for Kids!
Subscribe
How To
Apple iTunes
RSS Reader
Web Shortcuts
Chandra Blog
RSS Feed
Chandra Mobile
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Recent Podcast
A Tour of The Big, Bad & Beautiful Universe with Chandra
A Tour of The Big, Bad & Beautiful Universe with Chandra
To celebrate the 15th anniversary of NASA's Chandra X-ray Observatory, we have released four new images of supernova remnants. These show Chandra's ability to study the remains of supernova explosions, using images that are the sharpest available in X-ray astronomy. The images of the Tycho and G292.0+1.8 supernova remnants show how Chandra can trace the expanding debris of an exploded star. The images show shock waves, similar to sonic booms from a supersonic plane, that travel through space at speeds of millions of miles per hour. The images of the Crab Nebula and 3C58 show the effects of very dense, rapidly spinning neutron stars created when a massive star explodes. These neutron stars can create clouds of high-energy particles that glow brightly in X-rays. The image for G292 shows oxygen (yellow and orange), and other elements such as magnesium (green) and silicon and sulfur (blue) that were forged in the star before it exploded. For the other images, the lower energy X-rays are shown in red and green and the highest energy X-rays are shown in blue. (2014-07-22)


PSR J0357+3205 in 60 Seconds

View/Listen
Narrator (April Hobart, CXC): A spinning neutron star is tied to a mysterious tail, or is it? Astronomers using NASA's Chandra X-ray Observatory have found a long, X-ray bright tail streaming away from the pulsar known as PSR J0357. The tail appears to stretch for over 4 light years from behind the pulsar, which would make it the longest one ever seen trailing behind this type of pulsar. However, as is often the case in astronomy, things are not quite so simple. The amount of energy being lost from the pulsar doesn't seem to account for all of the material seen in the tail. Also, the brightest portion of the tail is not actually near the pulsar, which scientists would expect. So scientists plan on looking at PSR J0357 more in the future with Chandra and other telescopes, and hope that even more data will help them pin down what is happening in this intriguing object.

Return to Podcasts