By Length
Full (4-12 min)
Short (1-4 min)
By Date
2024 | 2023 | 2022 | 2021
2020 | 2019 | 2018 | 2017
2016 | 2015 | 2014 | 2013
2012 | 2011 | 2010 | 2009
2008 | 2007 | 2006
By Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Groups of Galaxies
Cosmology/Deep Field
Miscellaneous
HTE
STOP
Space Scoop for Kids!
Chandra Sketches
Light
AstrOlympics
Quick Look
Visual Descriptions
Subscribe
How To
RSS Reader
Audio-only format podcast
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader


A Tour of il Gioiello Cluster

View/Listen
Narrator (April Hobart, CXC): Galaxy clusters are the largest structures in the Universe held together by gravity. Because of their immense size, their growth and evolution tell us a lot about how the Universe itself has changed over time. A newly discovered galaxy cluster provides some intriguing clues. This galaxy cluster is officially known as XDCP J0044.0-2033. Perhaps not surprisingly, astronomers decided to give a nickname to this mouthful of a cluster name. Because this cluster has many colors in X-ray light due to its plentiful hot gas and star forming galaxies, astronomers dubbed this the "Gioiello" Cluster, which means "Jewel" in Italian. The Gioiello Cluster is located about 9.6 billion light years from Earth. Scientists think this cluster formed approximately 3.3 billion years after the Big Bang. This means that the Gioiello Cluster is a mere 800 million years old as we observe it. A long observation from Chandra, totally over four days worth of observing time, provided astronomers with enough information to accurately determine the mass and other properties of the cluster. They found the Gioiello Cluster tops out at a whopping 400 trillion times the mass of the Sun. The discoveries of the Gioiello Cluster and others like it are helping astronomers better understand how galaxy clusters have developed over the lifetime of the Universe.

Return to Podcasts