By Definition
High Definition
Standard Definition
By Length
Full (4-12 min)
Short (1-4 min)
By Date
2014 | 2013 | 2012 | 2011 | 2010
2009 | 2008 | 2007 | 2006
By Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Groups of Galaxies
Cosmology/Deep Field
Miscellaneous
HTE
STOP
Space Scoop for Kids!
Subscribe
How To
Apple iTunes
RSS Reader
Web Shortcuts
Chandra Blog
RSS Feed
Chandra Mobile
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Recent Podcast
A Tour of The Big, Bad & Beautiful Universe with Chandra
A Tour of The Big, Bad & Beautiful Universe with Chandra
To celebrate the 15th anniversary of NASA's Chandra X-ray Observatory, we have released four new images of supernova remnants. These show Chandra's ability to study the remains of supernova explosions, using images that are the sharpest available in X-ray astronomy. The images of the Tycho and G292.0+1.8 supernova remnants show how Chandra can trace the expanding debris of an exploded star. The images show shock waves, similar to sonic booms from a supersonic plane, that travel through space at speeds of millions of miles per hour. The images of the Crab Nebula and 3C58 show the effects of very dense, rapidly spinning neutron stars created when a massive star explodes. These neutron stars can create clouds of high-energy particles that glow brightly in X-rays. The image for G292 shows oxygen (yellow and orange), and other elements such as magnesium (green) and silicon and sulfur (blue) that were forged in the star before it exploded. For the other images, the lower energy X-rays are shown in red and green and the highest energy X-rays are shown in blue. (2014-07-22)


STOP for Science: That's Fast

View/Listen
Narrator (April Hobart, CXC) Most of us have heard the story of the tortoise and the hare. The tortoise is slow and the hare is fast. But what exactly does this mean?

The speed of an object is defined as the distance it will travel in a certain amount of time. If something travels 100 feet in 10 seconds, its speed is 10 feet per second. We often talk about speeds in miles per hour in the US, or kilometers per hour in most other parts of the world.

Speeds are fun to talk about because they are easy to compare – just like the tortoise and the hare. For example, we know the fastest animal on land is the cheetah. It can reach speeds of 70 miles an hour. In the air, a Peregrine falcon is the fastest, clocking in at nearly 200 miles per hour at its top speed.

While this sounds really fast to us – and it is for humans – it's actually very slow when we compare it to, say, objects in space. For example, let's look at how fast the Earth moves around the Sun. Remember, it takes the Earth one year to make one orbit around the Sun. With this distance being 580 million miles, this means that the Earth moves on average at a speed of some 67,000 miles per hour through space.

Elsewhere in the Universe, we see things moving even faster. In the Vela pulsar, for instance, astronomers have watched as a jet of particles races away from a spinning neutron star at incredibly high speeds. They have also found evidence for giant clusters of galaxies smashing into each other at several million miles per hour.

There is, however, a limit to how fast things go. Albert Einstein himself figured out that nothing can travel faster than the speed of light. How fast is this exactly? Light travels 186,000 miles every second. Using more familiar units, this translates into over 670 million miles per hour. That is the speed limit for our Universe. Remember this when you think about what we consider fast and slow. It puts the tortoise and hare in a whole new perspective.