Blasts from the Past: Historic Supernovas

- **RCW 86**
 - Historical Observers: Chinese
 - Likelihood of Identification: Possible
 - Distance Estimate: 8,200 light years
 - Type: Core collapse of massive star

- **G1.2-0.3**
 - Historical Observers: Chinese
 - Likelihood of Identification: Probable
 - Distance Estimate: 16,000 light years
 - Type: Core collapse of massive star

- **G347.3-0.5**
 - Historical Observers: Chinese
 - Likelihood of Identification: Possible
 - Distance Estimate: 3,000 light years
 - Type: Core collapse of massive star?

- **SN 1006**
 - Historical Observers: Chinese, Japanese, Arabic, European
 - Likelihood of Identification: Definite
 - Distance Estimate: 7,000 light years
 - Type: Thermonuclear explosion of white dwarf

- **Crab Nebula**
 - Historical Observers: Chinese, Japanese, Arabic, Native American?
 - Likelihood of Identification: Definite
 - Distance Estimate: 6,000 light years
 - Type: Core collapse of massive star

- **3C58**
 - Historical Observers: Chinese, Japan
 - Likelihood of Identification: Possible
 - Distance Estimate: 10,000 light years
 - Type: Core collapse of massive star

- **Tycho’s SNR**
 - Historical Observers: European, Chinese, Korean
 - Likelihood of Identification: Definite
 - Distance Estimate: 7,500 light years
 - Type: Thermonuclear explosion of white dwarf

- **Kepler’s SNR**
 - Historical Observers: European, Chinese, Korean
 - Likelihood of Identification: Definite
 - Distance Estimate: 13,000 light years
 - Type: Thermonuclear explosion of white dwarf?

- **Cassiopeia A**
 - Historical Observers: European?
 - Likelihood of Identification: Possible
 - Distance Estimate: 10,000 light years
 - Type: Core collapse of massive star

NASA’s Chandra X-ray Observatory
HISTORIC SUPERNOVAS
Every 50 years or so, a star in our Galaxy blows itself apart in a supernova explosion, one of the most violent events in the universe. The force of these explosions produces spectacular light shows. Explosions in past millennia have been bright enough to catch the attention of early astronomers hundreds of years before the telescope had been invented.

Since supernovas are rarely seen in the Milky Way, they are of great interest to astronomers with information from today. The comets form comets involve relatively faint sources of light, which are difficult to observe, and provide valuable clues about supernovae in general. The, historical observations are made using optical light, but today telescopes that detect the electromagnetic spectrum are often used to detect electromagnetic radiation, including X-ray light. Because material is heated to millions of degrees, the X-rays offer a way to observe supernovae that have cooled down to a few million degrees. The Chandra X-ray Observatory, on the other hand, can observe relatively cooler supernovae. The XMM-Newton X-ray observatories show low, medium, and high-energy X-rays in red, green, and blue respectively. The optical, radio, and X-ray emission observed by the XMM-Newton X-ray observatories show low, medium, and high-energy X-rays in red, green, and blue respectively. The XMM-Newton X-ray observatories show low, medium, and high-energy X-rays in red, green, and blue respectively.

The effect of supernova explosions on the material surrounding the supernova is significant. The explosion itself produces a shock wave that travels through the material, heating it to millions of degrees. The shock wave also produces a cloud of material that is expanding outward. As this cloud expands, it interacts with the surrounding material, creating a complex pattern of structures. The Chandra X-ray Observatory has observed many supernova remnants, including the remnant of SN 1054, the remnant of SN 1006, and the remnant of SN 1014. These remnants are significant because they provide information about the nature of supernova explosions and the properties of the material that is produced. X-rays are produced as the shock wave interacts with the material, heating it to millions of degrees. The Chandra X-ray Observatory has detected X-rays from these remnants, allowing us to study the properties of the material that is produced.

The supernova of 185 AD was recorded by Chinese observers and was the first supernova to be observed by telescopes. The remnant of this supernova is known as G1 1.2-0.3. The supernova of 386 AD was recorded by Chinese observers and was the second supernova to be observed by telescopes. The remnant of this supernova is known as G347.3-0.5. The supernova of 1604 AD was recorded by Chinese observers and was the third supernova to be observed by telescopes. The remnant of this supernova is known as Kepler's SNR.

The supernova of 1054 AD was recorded by Chinese observers and was the first supernova to be observed by telescopes. The remnant of this supernova is known as Cas A. The supernova of 1006 AD was recorded by Chinese observers and was the second supernova to be observed by telescopes. The remnant of this supernova is known as SNR 1006. The supernova of 1014 AD was recorded by Chinese observers and was the third supernova to be observed by telescopes. The remnant of this supernova is known as SNR 1014. The supernova of 1671 AD was recorded by Chinese observers and was the fourth supernova to be observed by telescopes. The remnant of this supernova is known as SNR 1671.

The supernova of 1604 AD was recorded by Chinese observers and was the fifth supernova to be observed by telescopes. The remnant of this supernova is known as Kepler's SNR. The supernova of 1605 AD was recorded by Chinese observers and was the sixth supernova to be observed by telescopes. The remnant of this supernova is known as SNR 1605. The supernova of 1680 AD was recorded by Chinese observers and was the seventh supernova to be observed by telescopes. The remnant of this supernova is known as SNR 1680. The supernova of 1738 AD was recorded by Chinese observers and was the eighth supernova to be observed by telescopes. The remnant of this supernova is known as SNR 1738.