1. Learn About the Milky Way
QuicktimeMPEG The word galaxy comes from the Greek word meaning "milky circle" or the more familiar Milky Way.
The white band of light across the night sky that we call the Milky Way was poetically described long before Galileo, but with his small telescope, what he discovered was a multitude of individual stars, so numerous as almost to surpass belief.
Today we know that the Milky Way is our home galaxy, a vast rotating spiral of gas, dust and hundreds of billions of stars.
The sun and its planetary system formed in the outer reaches of the Milky Way about 4.5 billion years ago.
See the Milky Way through Chandra's eyes.
[Runtime: 1.31]
(NASA/CXC/A. Hobart)
QuicktimeMPEG The word galaxy comes from the Greek word meaning "milky circle" or the more familiar Milky Way.
The white band of light across the night sky that we call the Milky Way was poetically described long before Galileo, but with his small telescope, what he discovered was a multitude of individual stars, so numerous as almost to surpass belief.
Today we know that the Milky Way is our home galaxy, a vast rotating spiral of gas, dust and hundreds of billions of stars.
The sun and its planetary system formed in the outer reaches of the Milky Way about 4.5 billion years ago.
See the Milky Way through Chandra's eyes.
[Runtime: 1.31]
(NASA/CXC/A. Hobart)
2. Tour of Sagittarius A*
QuicktimeMPEG Over several years, astronomers have noticed flares in X-ray light from the black hole at the center of the Milky Way. NASA's Chandra X-ray Observatory detected these flares during the telescope's periodic observations of the black hole. A new study suggests that these flares may occur when the black hole - known as Sagittarrius A* or Sgr A* for short -- consumes an asteroid at least six miles wide. If an asteroid gets too close to another object like a star or planet, it can be thrown into an orbit headed toward Sgr A*. Once the asteroid passes within about 100 million miles of the black hole, it is torn into pieces by the black hole's tidal forces. Eventually, these fragments are vaporized by friction as they pass through the hot, thin gas flowing onto Sgr A*. This is what produces an X-ray flare. If confirmed, this result could mean that there is a cloud around Sgr A* containing trillions of asteroids and comets. This would be an exciting development for the many scientists who are fascinated by the Milky Way's giant black hole and the environment around it.
[Runtime: 01:17]
(NASA/CXC/A. Hobart)
Related Chandra Images:
QuicktimeMPEG Over several years, astronomers have noticed flares in X-ray light from the black hole at the center of the Milky Way. NASA's Chandra X-ray Observatory detected these flares during the telescope's periodic observations of the black hole. A new study suggests that these flares may occur when the black hole - known as Sagittarrius A* or Sgr A* for short -- consumes an asteroid at least six miles wide. If an asteroid gets too close to another object like a star or planet, it can be thrown into an orbit headed toward Sgr A*. Once the asteroid passes within about 100 million miles of the black hole, it is torn into pieces by the black hole's tidal forces. Eventually, these fragments are vaporized by friction as they pass through the hot, thin gas flowing onto Sgr A*. This is what produces an X-ray flare. If confirmed, this result could mean that there is a cloud around Sgr A* containing trillions of asteroids and comets. This would be an exciting development for the many scientists who are fascinated by the Milky Way's giant black hole and the environment around it.
[Runtime: 01:17]
(NASA/CXC/A. Hobart)
Related Chandra Images:
- Photo Album: Sagittarius A*
3. Animation of a Black Hole's Outburst
QuicktimeMPEG This animation shows how high-energy particles and X-ray flares are produced when matter falls onto the accretion disk around a supermassive black hole. Astronomers believe such an event occurred to produce the light echo seen in the latest Chandra results.
[Runtime: 0.10]
(NASA/CXC/D.Berry)
Related Chandra Images:
QuicktimeMPEG This animation shows how high-energy particles and X-ray flares are produced when matter falls onto the accretion disk around a supermassive black hole. Astronomers believe such an event occurred to produce the light echo seen in the latest Chandra results.
[Runtime: 0.10]
(NASA/CXC/D.Berry)
Related Chandra Images:
- Photo Album: Light Echo at Galactic Center
4. Illustrations of Light Echo
QuicktimeMPEG This sequence of illustrations shows how an outburst from Sgr A* -- produced when material falls into the black hole -- generates a light echo. The faint, star-like object in the center represents the typical, quiet behavior, when the black hole does not have much material to consume. When the black hole's feeding rate increases dramatically, the material around Sgr A* brightens. Although the black hole outburst stops, the light from the outburst continues to travel outwards and then reflects, or echoes, off three clouds of gas in its path.
[Runtime: 0.13]
(NASA/CXC/M.Weiss)
Related Chandra Images:
QuicktimeMPEG This sequence of illustrations shows how an outburst from Sgr A* -- produced when material falls into the black hole -- generates a light echo. The faint, star-like object in the center represents the typical, quiet behavior, when the black hole does not have much material to consume. When the black hole's feeding rate increases dramatically, the material around Sgr A* brightens. Although the black hole outburst stops, the light from the outburst continues to travel outwards and then reflects, or echoes, off three clouds of gas in its path.
[Runtime: 0.13]
(NASA/CXC/M.Weiss)
Related Chandra Images:
- Photo Album: Light Echo at Galactic Center
5. Tour of Sagittarius A*
QuicktimeMPEG Astronomers have long known that the supermassive black hole at the center of our Milky Way galaxy is a particularly poor eater. The fuel for this black hole, known as Sagittarius A* (or Sgr A* for short), comes from powerful winds blown off nearby stars. Scientists have previously calculated that Sgr A* should consume about one percent of the fuel carried in the winds. However, it now appears that Sgr A* consumes much less than even that. It only ingests about one percent of that one percent. Why does it consume so little? A theoretical model based on these new deep data seen in this Chandra image may provide the answer. It turns out that there is an inner and outer region around the black hole. Pressure flowing outward causes nearly all of the gas to move away from the black hole. This in turn starves the black hole of much of its fuel, and this is why astronomers have seen so little activity from this, our closest supermassive black hole.
[Runtime: 1.08]
(NASA/CXC/MIT/F.K. Baganoff et al.)
Related Chandra Images:
QuicktimeMPEG Astronomers have long known that the supermassive black hole at the center of our Milky Way galaxy is a particularly poor eater. The fuel for this black hole, known as Sagittarius A* (or Sgr A* for short), comes from powerful winds blown off nearby stars. Scientists have previously calculated that Sgr A* should consume about one percent of the fuel carried in the winds. However, it now appears that Sgr A* consumes much less than even that. It only ingests about one percent of that one percent. Why does it consume so little? A theoretical model based on these new deep data seen in this Chandra image may provide the answer. It turns out that there is an inner and outer region around the black hole. Pressure flowing outward causes nearly all of the gas to move away from the black hole. This in turn starves the black hole of much of its fuel, and this is why astronomers have seen so little activity from this, our closest supermassive black hole.
[Runtime: 1.08]
(NASA/CXC/MIT/F.K. Baganoff et al.)
Related Chandra Images:
- Photo Album: Sagittarius A*
6. Tour of Multiwavelength Galactic Center
QuicktimeMPEG This never-before-seen view of the turbulent heart of our Milky Way combines a near-infrared view from Hubble, an infrared image from Spitzer, and X-ray data from Chandra. The composite image features the spectacle of galactic evolution: from vibrant regions of star birth to young and old stellar populations and even to the eerie remains of stellar death called black holes. All of this occurs against a fiery backdrop in the crowded, hostile environment of the galaxy's core, the center of which is ruled by a supermassive black hole. A diffuse haze of X-ray light from hot gas permeates the entire field. This gas has been heated to millions of degrees by outflows from the supermassive black hole as well as by winds from massive stars and stellar explosions.
[Runtime: 0.53]
(X-ray: NASA/CXC/UMass/D. Wang et al.; Optical: NASA/ESA/STScI/D.Wang et al.; IR: NASA/JPL-Caltech/SSC/S.Stolovy)
Related Chandra Images:
QuicktimeMPEG This never-before-seen view of the turbulent heart of our Milky Way combines a near-infrared view from Hubble, an infrared image from Spitzer, and X-ray data from Chandra. The composite image features the spectacle of galactic evolution: from vibrant regions of star birth to young and old stellar populations and even to the eerie remains of stellar death called black holes. All of this occurs against a fiery backdrop in the crowded, hostile environment of the galaxy's core, the center of which is ruled by a supermassive black hole. A diffuse haze of X-ray light from hot gas permeates the entire field. This gas has been heated to millions of degrees by outflows from the supermassive black hole as well as by winds from massive stars and stellar explosions.
[Runtime: 0.53]
(X-ray: NASA/CXC/UMass/D. Wang et al.; Optical: NASA/ESA/STScI/D.Wang et al.; IR: NASA/JPL-Caltech/SSC/S.Stolovy)
Related Chandra Images:
- Photo Album: Galactic Center
7. Tour of Galactic Center
QuicktimeMPEG This image from the Chandra X-ray Observatory reveals a wealth of exotic objects and high-energy features at the center of our Milky Way galaxy. In this new and deep image from Chandra, red represents lower-energy X-rays, green shows the medium range, and blue indicates the higher-energy X-rays Chandra can detect. The hundreds of small dots show emission from material around black holes and other dense stellar objects like neutron stars. A supermassive black hole -- some four million times more massive than the Sun -- resides within the bright region to the right of center. The diffuse X-ray light comes from gas heated to millions of degrees by outflows from the supermassive black hole, winds from giant stars, and stellar explosions.
[Runtime: 0.50]
(Credit: NASA/CXC/UMass/D. Wang et al.)
Related Chandra Images:
QuicktimeMPEG This image from the Chandra X-ray Observatory reveals a wealth of exotic objects and high-energy features at the center of our Milky Way galaxy. In this new and deep image from Chandra, red represents lower-energy X-rays, green shows the medium range, and blue indicates the higher-energy X-rays Chandra can detect. The hundreds of small dots show emission from material around black holes and other dense stellar objects like neutron stars. A supermassive black hole -- some four million times more massive than the Sun -- resides within the bright region to the right of center. The diffuse X-ray light comes from gas heated to millions of degrees by outflows from the supermassive black hole, winds from giant stars, and stellar explosions.
[Runtime: 0.50]
(Credit: NASA/CXC/UMass/D. Wang et al.)
Related Chandra Images:
- Photo Album: Galactic Center
8. Tour of Galactic Ridge
QuicktimeMPEG This sequence begins with an infrared view from the Spitzer Space Telescope of the central region of the Milky Way. We then zoom into a region about 1.4 degrees away from the center of the galaxy where the Chandra X-ray Observatory focused its attention for about twelve days' worth of time. This region is known as the Galactic Ridge, because earlier X-ray observatories found a structure of diffuse emission stretching across the plane of the galaxy. The new long Chandra observation shows that this X-ray haze is actually composed of thousands of individual sources, like stars and binary systems.
[Runtime: 0.37]
(X-ray (NASA/CXC/TUM/M.Revnivtsev et al.); IR (NASA/JPL-Caltech/GLIMPSE Team))
Related Chandra Images:
QuicktimeMPEG This sequence begins with an infrared view from the Spitzer Space Telescope of the central region of the Milky Way. We then zoom into a region about 1.4 degrees away from the center of the galaxy where the Chandra X-ray Observatory focused its attention for about twelve days' worth of time. This region is known as the Galactic Ridge, because earlier X-ray observatories found a structure of diffuse emission stretching across the plane of the galaxy. The new long Chandra observation shows that this X-ray haze is actually composed of thousands of individual sources, like stars and binary systems.
[Runtime: 0.37]
(X-ray (NASA/CXC/TUM/M.Revnivtsev et al.); IR (NASA/JPL-Caltech/GLIMPSE Team))
Related Chandra Images:
- Photo Album: Galactic X-ray Ridge
9. Into the Milky Way: Quintuplet Cluster
QuicktimeMPEG This sequence begins with Chandra's X-ray view of a 900 by 400 light year swath of the center of the Milky Way. It then zooms into a smaller region where large filamentary structures are seen in radio waves. The view moves in even closer to show the Quintuplet star cluster. Named for its five brightest stars at infrared wavelengths, the Quintuplet is known to be home to hundreds of stars. Several of these are very massive stars that are rapidly losing gas from their surfaces in high-speed stellar winds. Collisions from these winds are what astronomers believe to be the source for the point-like concentrations seen in the Chandra image.
[Runtime: 0:24]
(X-ray: NASA/CXC/NWU/C.Law & F.Zadeh; IR: NASA/ESO/STScI/D.Figer et al.; Radio: NRAO/AUI/NSF/F.Zadeh et al.)
Related Chandra Images:
QuicktimeMPEG This sequence begins with Chandra's X-ray view of a 900 by 400 light year swath of the center of the Milky Way. It then zooms into a smaller region where large filamentary structures are seen in radio waves. The view moves in even closer to show the Quintuplet star cluster. Named for its five brightest stars at infrared wavelengths, the Quintuplet is known to be home to hundreds of stars. Several of these are very massive stars that are rapidly losing gas from their surfaces in high-speed stellar winds. Collisions from these winds are what astronomers believe to be the source for the point-like concentrations seen in the Chandra image.
[Runtime: 0:24]
(X-ray: NASA/CXC/NWU/C.Law & F.Zadeh; IR: NASA/ESO/STScI/D.Figer et al.; Radio: NRAO/AUI/NSF/F.Zadeh et al.)
Related Chandra Images:
- Photo Album: Quintuplet Cluster
10. Towards the Milky Way: DB00-6
QuicktimeMPEG his series of images shows the DB00-58 star cluster in context with Chandra's 900- by 400-light year mosaic of the Galactic Center. The view then transitions to radio emission from a smaller region that includes DB00-6, before showing infrared data, and ending with Chandra's X-ray close-up. . Despite DB00-6's similar appearance to DB01-42 (#1, above), the X-ray and infrared information show that DB00-6 is, in fact, a foreground object, and is significantly closer to us than 25,000 light years.
[Runtime: 0:24]
(X-ray: NASA/CXC/Northwestern U./C.Law & F.Yusef-Zadeh; Infrared: 2MASS/UMass/IPAC-Caltech/NASA/NSF; Radio: NRAO/AUI/NSF/F.Zadeh et al.)
Related Chandra Images:
QuicktimeMPEG his series of images shows the DB00-58 star cluster in context with Chandra's 900- by 400-light year mosaic of the Galactic Center. The view then transitions to radio emission from a smaller region that includes DB00-6, before showing infrared data, and ending with Chandra's X-ray close-up. . Despite DB00-6's similar appearance to DB01-42 (#1, above), the X-ray and infrared information show that DB00-6 is, in fact, a foreground object, and is significantly closer to us than 25,000 light years.
[Runtime: 0:24]
(X-ray: NASA/CXC/Northwestern U./C.Law & F.Yusef-Zadeh; Infrared: 2MASS/UMass/IPAC-Caltech/NASA/NSF; Radio: NRAO/AUI/NSF/F.Zadeh et al.)
Related Chandra Images:
- Photo Album: DB00-6











