Images
X-ray Images
Chandra Mission
X-ray Astronomy
Chandra People
Podcasts
Chandra in HD
Standard Definition
The Invisible Sky
Two Inch Universe
By Date/Category
Other Features
Animations & Video
Special Features
Audio
Inspirations
3D Files and Resources
Resources
Q & A
Glossary
Acronym Guide
Further Reading
Desktop Images
iPhone Wallpapers
By Date/Category
Miscellaneous
Handouts
Image Handouts
Chandra Lithographs
Chandra Infographics
Educational Activities
Printable Games
Chandra Fact Sheets
Presentations
Entire Collection
By Date
By Category
Presentations
Web Shortcuts
Chandra Blog
RSS Feed
Chandra Mobile
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Problems Viewing?
Having trouble viewing a movie? Make sure you update your video plug-ins. Visit our download center for help.
More Information
Normal & Starburst Galaxies
X-ray Astronomy Field Guide
Normal & Starburst Galaxies
Questions and Answers
Normal & Starburst Galaxies
Chandra Images
Normal & Starburst Galaxies
Animations & Video: Normal Galaxies & Starburst Galaxies
Page 1234567
Click for high-resolution animation
1. Not Your Average Superhero
QuicktimeMPEG Audio Only A black hole is formed when a massive star is squashed into an incredibly tiny volume. (The equivalent of squeezing the Earth into the size of a marble!) Packing so much material in such a small space gives black holes a superpower: Incredibly strong gravity that can even swallow-up light forever if it gets too close!

Around the danger zone, before disappearing forever into the black hole, any nearby material is accelerated to very high speeds. This fast-moving material gives off X-rays, which astronomers can observe using special telescopes in space.

Of course, there should be a limit to even a superhero's powers. But in recent years, astronomers have discovered regions around black holes that are giving off a crazy amount of X-rays - a lot more than what should be possible. In the galaxy pictured above, which is called M83, astronomers have discovered such a weirdly powerful black hole.

Astronomers still don't fully understand what is making these black holes mega-powerful, but it could be that they are much heavier than normal black holes. A heavy black hole could pull in more material than a smaller black hole, which would make a lot more X-rays. Instead of being a few times heavier than the Sun, like normal black holes, the mega-powerful ones could be up to 100 times heavier!
[Runtime: 01:56]
(NASA/CXC/A. Hobart)

Related Chandra Images:
  • Photo Album: M83

Click for high-resolution animation
2. A Tour of NGC 2276
QuicktimeMPEG Audio Only For many years, astronomers have known about two distinct classes of black holes. The first is called stellar-mass black holes, containing between five and thirty times the mass of our Sun. The second well-known category of black is known as supermassive black holes. These black holes are giants found at the centers of galaxies, weighing millions or even billions of times the Sun's mass. What about black holes that fall in between? Astronomers have been trying to find and study these intermediate-mass black holes for many years. A newly discovered object in the galaxy NGC 2276 may be an important step in that direction. By combining X-rays from Chandra along with radio data, scientists determined that this object in one of the galaxy's spiral arms is about 50,000 times the mass of the Sun - a perfect fit for an intermediate-mass black hole. Astronomers also used these data to look at what kind of impact this source may be having on its surroundings. They found that this intermediate-mass black hole is producing a jet that appears to be squelching the formation of stars around it. Scientists will continue to study this and other intermediate-mass black holes to see how they fit into the larger picture of black holes, galaxies, and the Universe.
[Runtime: 01:50]
(NASA/CXC/April Jubett)

Related Chandra Images:

Click for high-resolution animation
3. The Most Attractive Stars in the Universe
QuicktimeMPEG Audio Only Have you ever played with magnets? You might have done an experiment where you lay a magnet onto a table and place an iron nail nearby. If you push the magnet slowly toward the nail, there will come a point when the nail jumps across and sticks to the magnet. That's because magnets have something invisible that extends all around them, called a 'magnetic field'. It can cause a pushing or pulling force on other objects, even if the magnet isn't actually touching them.

The most powerful magnets in the Universe are called magnetars. These are tiny, super-compact stars, 50 times more massive than our Sun, squashed into a ball just 20 kilometers across. (That's about the size of a small city!)

Astronomers think magnetars may be created when some massive stars die in a supernova explosion. The star's gases blow out into space creating a colourful cloud like the one in this picture, called Kes 73. At the same time, the core of the star squashes down to form a magnetar.

At the center of the cosmic cloud in this photograph lies a tiny magnetar. But what this star lacks in size it makes up for in energy, shooting out powerful jets of X-rays every few seconds! You can see the X-ray jets in blue in this photograph.
[Runtime: 02:04]
(NASA/CXC/April Jubett)

Related Chandra Images:

Click for high-resolution animation
4. A Tour of IYL 2015
QuicktimeMPEG Audio Only The year of 2015 has been declared the International Year of Light, or IYL for short, by the United Nations. Organizations, institutions, and individuals involved in the science and applications of light will be joining together for this year-long celebration to help spread the word about the wonders of light.

In many ways, astronomy uses the science of light. By building telescopes that can detect light in its many forms from radio waves on one end of the "electromagnetic spectrum" to gamma rays on the other, scientists can get a better understanding of the processes at work in the Universe.

NASA's Chandra X-ray Observatory explores the Universe in X-rays, a high-energy form of light. By studying X-ray data and comparing them with observations in other types of light, scientists can develop a better understanding of objects that generate temperatures of millions of degrees and produce X-rays.

To recognize the start of IYL, the Chandra X-ray Center is releasing a collection of images that combine data from telescopes tuned to different wavelengths of light. From a distant galaxy to the relatively nearby debris field of an exploded star, these images demonstrate the myriad ways that information about the Universe is communicated to us through light.

So join us in celebrating IYL and all of the amazing things that light can do, including how it helps us understand the Universe we live in.
[Runtime: 01:58]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
5. Tour of NGC 2207 and IC 2163
QuicktimeMPEG Audio Only At this time of year, there are lots of gatherings often decorated with festive lights. When galaxies get together, there is also the chance of a spectacular light show. Take, for example, NGC 2207 and IC 2163. Located about 130 million light years from Earth in the constellation of Canis Major in the southern hemisphere, this pair of spiral galaxies is caught in a grazing encounter. This system has hosted three supernova explosions in the past 15 years, which is quite a few in such a short time.

This galactic pair has also produced one of the most bountiful collections of super bright X-ray lights known. These special objects - officially known as "ultraluminous X-ray sources" or ULXs - have been found using data from NASA's Chandra X-ray Observatory. As in our Milky Way galaxy, NGC 2207 and IC 2163 are sprinkled with many systems known as X-ray binaries, which consist of a star in a tight orbit around either a neutron star or a "stellar-mass" black hole. The strong gravity of the neutron star or black hole pulls matter from the companion star. As this matter falls toward the neutron star or black hole, it is heated to millions of degrees and generates X-rays. ULXs are far brighter in X-rays than most "normal" X-ray binaries. While the true nature of ULXs is still debated, they are likely an unusual type of X-ray binary. For example, some astronomers think that the black holes in some ULXs may be heavier than stellar mass black holes and could represent a hypothesized, but as yet unconfirmed, intermediate-mass category of black holes. Regardless of what they are, ULXs put on intriguing X-ray light displays no matter what the season.
[Runtime: 02:14]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
6. Chandra's Archives Come to Life
QuicktimeMPEG Audio Only Every year, NASA's Chandra X-ray Observatory looks at hundreds of objects throughout space to help expand our understanding of the Universe. Ultimately, these data are stored in the Chandra Data Archive, an electronic repository that provides access to these unique X-ray findings for anyone who would like to explore them. With the passing of Chandra's 15th anniversary, in operation since August 26, 1999, the archive continues to grow as each successive year adds to the enormous and invaluable dataset.

To celebrate Chandra's decade and a half in space, and to honor October as American Archive Month, a variety of objects have been selected from Chandra's archive. Each of the new images we have produced combines Chandra data with those from other telescopes. This technique of creating "multiwavelength" images allows scientists and the public to see how X-rays fit with data of other types of light, such as optical, radio, and infrared. As scientists continue to make new discoveries with the telescope, the burgeoning archive will allow us to see the high-energy Universe as only Chandra can.
[Runtime: 01:27]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
7. Tour of M82X-2
QuicktimeMPEG Audio Only Ultraluminous X-ray Sources, or ULXs, are unusual objects. They are rare and, as their name implies, give off enormous amounts of X-rays. Until now, astronomers thought that ULXs were powered by a system where a stellar mass black hole was in orbit around a neutron star or black hole. However, a study using data from NASA's NuSTAR and Chandra X-ray Observatory shows that this class of objects is more diverse than that. With NuSTAR, astronomers discovered regular variations, or pulsations, coming from a small region in the center of the galaxy M82, which is located about 11.4 million light years from Earth. The researchers then used Chandra, with its exceptionally keen vision in X-ray light, to pinpoint exactly which source was giving off these pulsations. This source is called M82X-2. It's hard to explain how a system with a black hole could generate the pulsations seen by NuSTAR. Because of this and other data, astronomers think that M82X-2 is the brightest pulsar ever seen. Pulsars are rapidly spinning neutron stars that sweep beams of radiation out like a lighthouse, and this is what would explain the pulsations of X-ray light seen in M82X-2. ULXs just became a little more unusual and intriguing to study.
[Runtime: 01:43]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
8. Tour of M82 SN2014J
QuicktimeMPEG Audio Only Earlier this year, astronomers discovered one of the closest supernovas in decades. Now, new data from NASA's Chandra X-ray Observatory has provided information on the environment of the star before it exploded, and insight into the possible cause of the explosion. On January 21, 2014, astronomers witnessed a supernova just days after it went off in the Messier 82, or M82, galaxy. Telescopes across the globe and in space turned their attention to study this newly exploded star. Astronomers quickly determined this supernova, dubbed SN 2014J, belongs to a class of explosions called "Type Ia" supernovas. These supernovas are used as cosmic distance-markers and played a key role in the discovery of the Universe's accelerated expansion, which has been attributed to the effects of dark energy.

While astronomers agree that Type Ia supernovas occur when a white dwarf star explodes, they are not sure exactly how this happens. For example, do these supernovas go off when the white dwarf pulls too much material from a companion star like the Sun, or when two white dwarf stars merge? Researchers used Chandra to look for clues. They took observations with Chandra about three weeks after 2014J and compared it with Chandra data taken prior to the explosion. They found, well, nothing.

Although it may sound counterintuitive, this non-detection of X-rays actually told astronomers quite a bit. Specifically, it showed that the environment around the star was relatively free of material before it exploded. This means that it's very unlikely that a messy transfer of material between the white dwarf and a companion star took place. Rather, whatever caused SN 2014J to explode cleared out the space around the star beforehand. This helps astronomers narrow down the possibilities and get closer to the answer of just what caused SN 2014J.
[Runtime: 03:16]
(NASA/CXC/April Jubett)

Related Chandra Images:

Click for high-resolution animation
9. Tour of NGC 4258 (M106)
QuicktimeMPEG Audio Only NGC 4258, also known as Messier 106, is a spiral galaxy like the Milky Way. This galaxy is famous, however, for something that our Galaxy doesn’t have – two extra spiral arms that glow in X-ray, optical, and radio light. These features, or anomalous arms, are not aligned with the plane of the galaxy, but instead intersect with it. The X-ray image from Chandra reveals huge bubbles of hot gas above and below the plane of the galaxy. These bubbles indicate that much of the gas that was originally in the disk of the galaxy has been heated to millions of degrees and ejected into the outer regions by the jets from the black hole. The ejection of gas from the disk by the jets has important implications for the fate of this galaxy. Researchers estimate that all of the remaining gas will be ejected within the next 300 million years -- very soon on cosmic time scales – unless it is somehow replenished. Without this gas, relatively few stars can form there. In fact, scientists estimate that that star formation in the central region of NGC 4258 is already being choked off, with stars forming at a rate ten times less than in the Milky Way galaxy.
[Runtime: 01:42]
(NASA/CXC/A. Hobart)

Related Chandra Images:

Click for high-resolution animation
10. X-rays Uncover Black Holes Dancing With Normal Stars
QuicktimeMPEG Audio Only Most of the stars in the Milky Way galaxy are not like our Sun, floating through space alone. A whopping 8-out-of-10 of them have one or more companion stars. A pair or stars orbiting each other is called a "binary system".

This photograph shows the flamboyant spiral galaxy called Messier 51. Each point of vivid purple light we are seeing glittering in this picture represents a special type of binary system. We call them 'X-ray binaries' because they are pairs of stars shining in X-ray light.

Each X-ray binary is made up of a normal star and a star which has passed beyond the end of its life. These companions are exotic things, most commonly a neutron star, but sometimes, a black hole.

If the stars are close enough together, the strong gravity of the exotic companion can drag gas off the normal star into a ring itself, before gobbling it up. When this happens the material is heated to over a million degrees and begins shining light as X-rays. And the stronger the gravity, the brighter the X-rays.

This picture of Messier 51 has revealed that at least ten of the X-ray binaries in the galaxy are bright enough that they probably contain black holes. In eight of these pairs the black holes are pulling material away from gigantic companion stars that are much more massive than the Sun!
[Runtime: 02:00]
(NASA/CXC/April Jubett)

Related Chandra Images:

Page 1234567