Chandra X-ray Observatory - HomeAbout The ChandraEducational MaterialsField GuidePhoto AlbumPress RoomResources
Chandra X-ray Observatory - HomeChandra Press Room - You are here
ObservatoryPress ReleasesPress Releases - by datePress Releases - by categoryPress KitsNews Release Guidelines & ContactsNasa TVOperations CXO Status ReportsPress AdvisoriesImage ReleasesBiographies & InterviewsPress Images
Web Site ToolsVisit the Chandra ChroniclesEmail NewsletterSite MapNew & NoteworthyImage Use PolicyQuestions & AnswersGlossaryDownload Guide

Astronomers Take the Measure of Dark Matter in the universe

September 6, 2001

IoA Press Release

Galaxy Clusters
Press Image and Caption


Using NASA's Chandra X-ray Observatory, astronomers have obtained their most accurate determination to date of the amount of dark matter in galaxy clusters, the most massive objects in the universe. The results provide an important step towards a precise measurement of the total matter density of the universe.

These results were presented today by Steven W. Allen of the Institute of Astronomy in Cambridge, UK at a press conference at the `Two Years of Science with Chandra' symposium in Washington, DC. Allen and his colleagues Robert W. Schmidt and Andrew C. Fabian at the Institute of Astronomy observed a carefully chosen sample of five of the largest clusters of galaxies known, whose distances range from 1.5 to 4 billion light years. The team made temperature maps of the hot multimillion-degree gas that fills the clusters.

"The temperature maps can be used to determine the mass needed to prevent the hot gas from escaping the clusters" explained Allen. "We found that the stars in the galaxies and hot gas together contribute only about 13 percent of the mass. The rest must be in the form of dark matter."

The nature of the dark matter is not known, but most astronomers think that it is in the form of an as yet unknown type of elementary particle that contributes to gravity through its mass but otherwise interacts weakly with normal matter. These dark matter particles are often called WIMPs, an acronym for `weakly interacting massive particles'.

Clusters of galaxies are vast concentrations of galaxies, hot gas and dark matter spanning millions of light years, held together by gravity. Because of their size, clusters of galaxies are thought to provide a fair sample of the proportion of dark matter in the universe as a whole.

"The implication of our results is that we live in a low-density universe" said Allen. "The total mass-density is only about thirty percent of that needed to stop the universe from expanding forever."

The result reinforces recent findings from measurements of the cosmic microwave background radiation, the large-scale distribution of galaxies, and the properties of distant supernovas. The Institute of Astronomy team minimized systematic errors in their work by placing independent constraints on the masses of the clusters using data from NASA's Hubble Space Telescope and the Canada-France-Hawaii Telescope atop Mauna Kea, HI. The new Chandra results also show how the average X-ray luminosity and temperature of the hot gas varies with the mass of a cluster. These findings should allow astronomers to use the data from large cluster catalogues, for which only X-ray luminosities are generally available, to get even more accurate measurements of the mean mass density of the universe, and to understand further the processes by which clusters form and grow.

The Chandra observations were carried out using the Advanced CCD Imaging Spectrometer, which was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program, and TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency.


Images associated with this release are available on the World Wide Web at:

http://chandra.harvard.edu

AND

http://chandra.nasa.gov


Science Contacts:
Steven Allen, swa@ast.cam.ac.uk
Robert Schmidt, rschmidt@ast.cam.ac.uk
Andrew Fabian, acf@ast.cam.ac.uk





[ Press Index ] [ Press Releases ] [ View other Groups & Clusters of Galaxies Releases ]


separator line
CXC Home | Search | Help | Site Map | Image Use Policy | Privacy & Accessibility | Downloads & Plugins
Latest Images | New & Noteworthy | Multimedia | Flash Ecards | Glossary | Q&A | Guestbook


RSS Feed RSS Feed | Podcast Podcast | Blog Blog

[News by email: Chandra Digest]
[Press Email cxcpress@cfa.harvard.edu]
[Public Email: cxcpub@cfa.harvard.edu]
NASA's Home Page Smithsonian's Home Page CXC Home Page Image Map for NASA's, Smithsonian and Chandra's Home Pages
Harvard-Smithsonian Center for Astrophysics
60 Garden Street, Cambridge, MA 02138 USA
Phone: 617.496.7941 Fax: 617.495.7356


Text Size:
normal font large font larger font
Chandra X-ray Center, Operated for NASA by the Smithsonian Astrophysical Observatory
This site was developed with funding from NASA under Contract NAS8-39073.
Revised: December 02, 2008