News by Date
News by Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Press Resources
Status Reports
Press Advisories
Image Releases
Release Guidelines
Image Use Policy
NASA TV
Biographies/Interviews
Web Shortcuts
Chandra Blog
RSS Feed
Chandra Mobile
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Related Links

Chandra @ NASA
Visit the Chandra pages at the NASA portal
Image Use
Image Use Policy & Request Form
Guidelines for utilizing images, applets, movies, and animations featured in this Web Site.
Getting Hard Copies of Images
Ways to obtain photos, slides, etc of Chandra images.
Chandra Captures Flare From Brown Dwarf

July 11, 2000

CXC PR: 00-19

The first flare ever seen from a brown dwarf, or failed star, was detected by NASA's Chandra X-ray Observatory. The bright X-ray flare has implications for understanding the explosive activity and origin of magnetic fields of extremely low mass stars.

Chandra detected no X-rays at all from LP 944-20 for the first nine hours of a twelve hour observation, then the source flared dramatically before it faded away over the next two hours. "We were shocked," said Dr. Robert Rutledge of the California Institute of Technology in Pasadena, the lead author on the discovery paper to appear in the July 20 issue of Astrophysical Journal Letters. "We didn't expect to see flaring from such a lightweight object. This is really the 'mouse that roared.'"

The energy emitted in the brown dwarf flare was comparable to a small solar flare, and was a billion times greater than observed X-ray flares from Jupiter. The flaring energy is believed to come from a twisted magnetic field. "This is the strongest evidence yet that brown dwarfs and possibly young giant planets have magnetic fields, and that a large amount of energy can be released in a flare," said Dr. Eduardo Martin, also of Caltech and a member of the team.

Professor Gibor Basri of the University of California, Berkeley, the principal investigator for this observation, speculated that the flare "could have its origin in the turbulent magnetized hot material beneath the surface of the brown dwarf. A sub-surface flare could heat the atmosphere, allowing currents to flow and give rise to the X-ray flare -- like a stroke of lightning."

LP 944-20 is about 500 million years old and has a mass that is about 60 times that of Jupiter, or 6 percent that of the Sun. Its diameter is about one-tenth that of the Sun and it has a rotation period of less than five hours. Located in the constellation Fornax in the southern skies, LP 944-20 is one of the best studied brown dwarfs because it is only 16 light years from Earth.

The absence of X-rays from LP 944-20 during the non-flaring period is in itself a significant result. It sets the lowest limit on steady X-ray power produced by a brown dwarf, and shows that the million degree Celsius upper atmospheres, or coronas, cease to exist as the surface temperature of a brown dwarf cools below about 2500 degrees Celsius.

"This is an important confirmation of the trend that hot gas in the atmospheres of lower mass stars is produced only in flares," said Professor Lars Bildsten of the University of California, Santa Barbara, also a member of the team.

Brown dwarfs have too little mass to sustain significant nuclear reactions in their cores. Their primary source of energy is the release of gravitational energy as they slowly contract. They are very dim ­ less than a tenth of a percent as luminous as the Sun -- and of great interest to astronomers because they are poorly understood and probably a very common class of objects that are intermediate between normal stars and giant planets.

The 12-hour observation of LP 944-20 was made on December 15, 1999, using the Advanced CCD Imaging Spectrometer (ACIS).

The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

Images associated with this release are available on the World Wide Web at:

http://chandra.harvard.edu

AND

http://chandra.nasa.gov


High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF) are available at the Internet sites listed above.

MEDIA CONTACTS

Dolores Beasley
Headquarters, Washington, DC
Phone: 202/358-1753

Steve Roy
Marshall Space Flight Center, Huntsville, AL
Phone: 256-544-6535

Dr. Wallace Tucker
Chandra X-ray Observatory Center, CfA, Cambridge, MA
Phone: 617-496-7998