Images by Date
Images by Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
Multiwavelength
Sky Map
Constellations
3D Wall
Photo Blog
Top Rated Images
Image Handouts
Desktops
High Res Prints
Fits Files
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Getting Hard Copies
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chandra Mobile
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
SN 2010jl Animations
Click for low-resolution animation
Tour of SN 2010jl
Quicktime MPEG
Why are some supernovas much more powerful than others? Astronomers are still trying to figure that out, but one new discovery may help answer the question. On November 3, 2010, a supernova was discovered in a galaxy located about 160 million light years from Earth. When astronomers used the Chandra X-ray Observatory to look at it, they found some very interesting clues. The Chandra data showed evidence that the shock wave formed by the supernova was, in fact, breaking through a cocoon of gas. This cocoon was probably formed when the star expelled its outer layers before finally collapsing on itself and exploding as a supernova. By observing this supernova just weeks after the initial explosion, scientists were able to learn more about this supernova and potentially others as they try to better understand how some stars die.
[Runtime: 01:01]

(Credit: NASA/CXC/A. Hobart)


Click for low-resolution animation
Breaking Free From a Cosmic Cocoon
Quicktime MPEG
In movies, heroes and villains are thrown forward after an explosion. This is because a powerful wave of energy, called a shock wave, is released. In space, the same thing happens when a star explodes in what is called a supernova explosion.

The shock wave from the supernova is absorbed by the star's outer shells of gas and dust, which escaped from the star before the explosion. It heats the gas so that it gives off X-ray radiation, which astronomers can photograph using special telescopes in space.

Astronomers took two pictures of this glowing cloud of gas and dust, which were taken about a year apart. By comparing the two X-ray photos, astronomers think that the shock wave is finally escaping from the cloud. This is the first time that astronomers have X-ray evidence for a shock wave breaking free from its gassy and dusty cocoon!
[Runtime: 01:24]

(Credit: NASA/CXC/April Jubett)


Return to SN 2010jl (May 15, 2012)