Images by Date
Images by Category
Solar System
Stars
Exoplanets
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
4K JPG
Multiwavelength
Sky Map
Constellations
Photo Blog
Top Rated Images
Image Handouts
Desktops
Fits Files
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
More Information
Black Holes
X-ray Astronomy Field Guide
Black Holes
Questions and Answers
Black Holes
Chandra Images
Black Holes
Neutron Stars/X-ray Binaries
X-ray Astronomy Field Guide: Neutron Stars/X-ray Binaries
Questions and Answers: Neutron Stars/X-ray Binaries
Chandra Images: Neutron Stars/X-ray Binaries
Related Podcasts
Tour: NASA Telescopes Discover Record-Breaking Black Hole
Download Image

More Information

More Images
Illustration of a Stellar-Mass Black Hole
(Illustration: NASA/CXC/M.Weiss)

Animation & Video


Related Images
GRO J1655-40:
NASA's Chandra Answers Black Hole Paradox


GRO J1655-40
Credit: Illustration: NASA/CXC/M.Weiss; X-ray Spectrum: NASA/CXC/U.Michigan/J.Miller et al.

The X-ray spectrum (see inset) of a binary star system consisting of a black hole and a normal star indicates that turbulent winds of multimillion degree gas are swirling around the black hole. As the illustration shows, much of the hot gas is spiraling inward toward the black hole, but about 30% is blowing away.

The temperature and intensity of the winds imply that powerful magnetic fields must be present. These magnetic fields, likely carried by the gas flowing from the companion star, create magnetic turbulence that generates friction in the gaseous disk and drive winds from the disk that carry momentum outward as the gas falls inward. Magnetic friction also heats the gas in the inner part of the disk to X-ray emitting temperatures.

The analysis of the disk wind of GRO J1655-40, or J1655 for short, confirmed what astronomers had long suspected, namely that magnetic friction is central to understanding how black holes accrete matter rapidly. Without a process to take away some of the angular momentum of the gas, it could remain in orbit around a black hole for a very long time.

J1655 is a binary system that harbors a black hole with a mass seven times that of the sun, which is pulling matter from a normal star about twice as massive as the sun. The Chandra observation revealed a bright X-ray source whose spectrum showed dips produced by absorption from a wide variety of atoms ranging from oxygen to nickel. A detailed study of these absorption features shows that the atoms are highly ionized and are moving away from the black hole in a high-speed wind.

Understanding the importance of magnetic forces in the disk of gas around J1655 could have far-reaching implications, from the supermassive black holes associated with powerful quasars, to planet-forming disks around young sun-like stars.

Fast Facts for GRO J1655-40:
Credit  Illustration: NASA/CXC/M.Weiss; X-ray Spectrum: NASA/CXC/U.Michigan/J.Miller et al.
Category  Black Holes, Neutron Stars/X-ray Binaries
Coordinates (J2000)  RA 16h 54m 00.14s | Dec -39° 50´ 44.90"
Constellation  Scorpius
Observation Dates  April 1, 2005
Observation Time  18 hours
Obs. IDs  5461
Instrument  ACIS/HETG
Distance Estimate  About 11,000 light years
Release Date  June 21, 2006