NGC 1232 in 60 Seconds

Narrator (April Hobart, CXC): Throughout the Universe, galaxies collide. Yet despite being a relatively common occurrence, astronomers are still trying to learn more about the details of what happens when these events take place. A new study using NASA's Chandra X-ray Observatory adds a new piece to this cosmic puzzle. The latest result from Chandra reveals a massive cloud of scorching gas in a galaxy about 60 million light years from Earth. The hot gas cloud - which has a temperature of about 6 million degrees -- is likely caused by a collision between a dwarf galaxy and a much larger galaxy called NGC 1232. If further research confirms that this indeed is the case, this discovery would mark the first time such a collision has been detected only in X-rays. And, because it might be an effective way to search for similar collisions, this result could have implications for understanding how other galaxies grow.

Return to Podcasts

Web Shortcuts
Chandra Blog
RSS Feed
Chandra Mobile
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Recent Podcast

HD 189733: NASA's Chandra Sees Eclipsing Planet in X-rays for First Time

Narrator (April Hobart, CXC): HD 189733b: An exoplanet in orbit around a star about 63 light years from Earth. It has been nearly two decades since the first exoplanets – that is, planets around stars other than our Sun – were discovered. Now for the first time, X-ray observations have detected an exoplanet passing in front of its parent star. The observations, made by NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton Observatory, took advantage of the alignment of a planet and its parent star in HD 189733. This alignment enabled the observatories to observe a dip in X-ray intensity as the planet moved in front of, or transited, the star. This technique is the one used so successfully at optical wavelengths by NASA's Kepler telescope. In earlier studies using optical light, astronomers discovered that the main star in the HD 189733 system had what is known as a "hot Jupiter" around it. This means the planet is about the size of Jupiter, but in very close orbit around its star. The planet – that has been named HD 189733b -- is over 30 times closer to its star than Earth is to the Sun, and goes around the star once every 2.2 days. The new X-ray data suggest that this planet has a larger atmosphere than previously thought. This, in turn, may imply that radiation from the parent star is evaporating the atmosphere of HD 189733b more quickly than expected. The results on HD 189733 demonstrate how we need information from many different telescopes that detect different types of light to get a fuller picture of these mysterious worlds that we are now able to explore.