New Chandra :: Educational Materials :: Crab Nebula Overlays
Featured Resources
Classroom-Ready Activities
Science Olympiad Webinar
Science Olympiad JS9 Guide
Space Math @ NASA
NSO Tests 2024
- GGSO Invitational
- NY RFTS Regional
- BirdSO Invitational
- DSM Astro Invitational
- UTexas Astro Invitational
- UTexas RFTS Invitational
Informal Education
Background
Interactive Games
Space Scoop
STOP for Science
Chandra Podcasts
Printable Materials
Resource Request
Educators' Comments
Evaluation Form
Links & Resources
Education Collaborations
Passport to Knowledge
Space Place
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Crab Nebula Overlays

Each of these same-scale images shows the Crab supernova remnant in a different wavelength. Each image will print on one overhead transparency. The purpose is to show the differences in the information conveyed by the image in each wavelength. The transparencies are designed to be superimposed as overlays. Each image is surrounded by small symbols (squares, triangles and circles) that when matched, will orient and align the images to superimpose accurately. These overlays allow superimposition of all four wave lengths simultaneously. Note that the on-line composite provides superimposition of images in selected pairs only. The overlays can be used as a classroom orientation with any of the activites listed below. Students can pursue individual investigations by using the on-line composite option.

These overlays can be used in conjunction with any of the investigations, tasks, or activities on this page which ask students to compare and contrast objects in different wavelengths. These include the Electromagnetic spectrum and CAS Timeline investigations, and the perfomance tasks "Signals from the Cosmos", "Point of View", "The universe Rated R!", "The Crab Through Time", and "Portrait Gallery of the X-Ray Universe".

The Crab Nebula is the remnant of a supernova explosion that was seen on Earth in 1054 AD. It is 6000 light years from Earth. At the center of the bright nebula is a rapidly spinning neutron star, or pulsar that emits pulses of radiation 30 times a second. These images show the Crab as viewed by four different types of telescopes. Comparing the X-ray, optical, infrared, and radio images of the Crab shows that the nebula appears most compact in X-rays and largest in the radio. The X-ray nebula shown in the Chandra image is about 40% as large as the optical nebula, which is in turn about 80% as large as the radio image. This can be understood by following the history of energetic electrons produced by the neutron star. Electrons with very high energies radiate mostly X-rays.

Cas A xray Jpg, Tif, PDF

Chandra X-ray
Chandra's X-ray image of the Crab Nebula directly traces the most energetic particles being produced by the pulsar. This amazing image reveals an unprecedented level of detail about the highly energetic particle winds and will allow scientists to probe deep into the dynamics of this cosmic powerhouse.
Credit: NASA/CXC/SAO)


Crab Nebula optical Jpg, Tif, PDF

Optical
As time goes on, and the electrons move outward, they lose energy to radiation. The diffuse optical light comes from intermediate energy particles produced by the pulsar. The optical light from the filaments is due to hot gas at temperatures of tens of thousands of degrees.
(Credit: Palomar Obs.)



Crab Nebula radio Jpg, Tif, PDF

Radio
Radio waves come from the lowest energy electrons. They can travel the greatest distance and define the full extent of the nebula. The Crab's central pulsar was discovered in 1968 by radio astronomers. The pulsar was then identified as a source of periodic optical and X-ray radiation. The periodic flashes of radiation are caused by a beam from the rapidly rotating neutron star.
(Credit: NRAO/AUI/NSF)


Crab Nebula Composite | Crab Nebula Photo Album